• Title/Summary/Keyword: 3차원 스캐닝 시스템

Search Result 60, Processing Time 0.023 seconds

Studies on the characteristics of stone structures by shape reversal, geotechnical and dynamic structural engineerings (석조구조물의 효율적 유지관리를 위한 형상역공학적, 지반공학적 및 구조동역학적 특성연구 - 첨성대를 중심으로 -)

  • Shon, Bo-Woong;Kim, Seong-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.25-48
    • /
    • 2004
  • Structures show the phehomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongju city, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.

Characteristic Studies on the Stone Cultural Heritage by Shape Reversal Engineerings (석조문화재의 형상역공학적 특성연구)

  • Shon, Ho-Woong;Lee, Kang-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.59-63
    • /
    • 2009
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural heritage. Non-destructive evaluation techniques were applied to protect it from survey: 3D precise laser scanning surveying system was applied to measure the exact size, displacement and declining angles.

  • PDF

Development of Alignment Information Extraction System on Highway by Terrestrial Laser Scanning Technique (지상 레이저 스캐닝 기법에 의한 도로선형정보 추출 시스템 개발)

  • Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.97-110
    • /
    • 2007
  • A laser scanning technique has been attracting much attention as a new technology to acquire location information. This technique might be applicable to a wide range of areas, most notably in geomatics, due to its high accuracy of location and automation of high-density data acquisition. A alignment information extraction system on highway has been developed in this study by utilizing the advantages of the laser scanning technique. The system can accurately interpret the alignment information of highway and can be applied to actual works. To develop the alignment information extraction system on highway, an algorithm that can automatically separate a horizontal alignment into a straight line, a transition curve, and a circular curve was developed. It can increase its efficiency compared to the conventional methods. In addition, an algorithm that can automatically extract design elements of horizontal and vertical alignments of highway was developed and applied to an object highway. This yielded higher practicality with more accurate values compared to those from previous studies on the extraction of design elements of highway alignment. Furthermore, the extracted design elements were used to perform a virtual driving simulation on the object highway. Through this, data were provided for a visual judgment for judging visually whether the topography and structures were harmonized in a three-dimensional manner or not. The study also presents data that can serve as a basis to determine highway surface freezing sections and to analyze three-dimensional sight distance models. Through the establishment of a systematic database for diverse data on highway and the development of web-based operating programs, an efficient highway maintenance can be ensured and also they can provide important information to be used when estimating a highway safety in the future.

  • PDF

Object Detection From 3D Terrain Data Gener Ated by Laser Scanner of Intelligent Excavating System(IES) (굴삭 자동화를 위한 레이저 스캐너 기반의 3차원 객체 탐지 알고리즘의 개발)

  • Yoo, Hyun-Seok;Park, Ji-Woon;Choi, Youn-Nyung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.130-141
    • /
    • 2011
  • The intelligent excavating system(IES), the development in South Korea of which has been underway since 2006, aims for the full-scale automation of the excavation process that includes a series of tasks such as movement, excavation and loading. The core elements to ensure the quality and safety of the automated excavation equipment include 3D modeling of terrain that surrounds the excavating robot and the technology for detecting objects accurately(i.e., for detecting the location of nearby loading trucks and humans as well as of obstacles positioned on the movement paths). Therefore the purpose of this research is to ensure the quality and safety of automated excavation detecting the objects surrounding the excavating robot via a 3D laser scanning system. In this paper, an algorithm for estimating the location, height, width, and shape of objects in the 3D-realized terrain that surrounds the location of the excavator was proposed. The performance of the algorithm was verified via tests in an actual earthwork field.

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

A Study for Construction Environment Pre-analysis by Integration of 3D Scanning and USN (3D 스캐닝 데이터와 USN의 통합에 위한 건설환경 사전분석 연구)

  • Yeon, Sangho;Lee, Youngwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.149-150
    • /
    • 2011
  • 3차원 건설환경의 디지털기반의 가시화는 도시계획 및 통신계획, 건설, 건축, 입체적인 도시공간정보시스템 구현, 안전 및 방재 등에서 많은 필요와 그 중요성이 크게 부각되고 있다. 건설현장의 환경정보의 사전분석에 의하여 USN의 구성과 실시간 정보취득의 장점을 활용하여 기존의 항공사진과 DEM의 매칭에 의한 3D지형공간에 온도, 습도, 조도, 적외선량, GPS위치, 이산화탄소량 등의 환경정보를 실시간으로 원하는 장소와 시간에서 획득하여 이를 모바일 스마트폰으로 연결함으로서 새로운 건설환경정보를 사전에 분석할 수 있도록 하였다.

  • PDF

Enhancement of 3D Scanning Performance by Correcting the Photometric Distortion of a Micro Projector-Camera System (초소형 카메라-프로젝터의 광학왜곡 보정을 이용한 위상변이 방식 3차원 스캐닝의 성능 향상)

  • Park, Go Gwang;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • A distortion correction technique is presented to enhance the 3D scanning performance of a micro-size camera-projector system. Recently, several types of micro-size digital projectors and cameras are available. However, there have been few effort to develop a micro-size 3D scanning system. We develop a micro-sized 3D scanning system which is based on the structured light technique. Three images of phase-shifted sinusoidal patterns are projected, captured, and analyzed by the system to reconstruct 3D shapes of very small objects. To overcome inherent optical imperfection of the micro 3D sensor, we correct the vignetting and blooming effects which cause distortions in the phase image. Error analysis and 3D scanning results on small real objects are presented to show the performance of the developed 3D scanning system.

Three Dimension Scanner System Using Parallel Camera Model (패러렐 카메라모델을 이용한 3차원 스캐너 시스템)

  • Lee, Hee-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.2
    • /
    • pp.27-32
    • /
    • 2001
  • In this paper, the three dimension scanner system employing the parallel camera model is discussed. The camera calibration process and the three dimension scanning algorithm are developed. The laser strip line is utilized for assisting stereo matching. An object being scanned rotates on the plate which is activated by a stepping motor, The world coordinate which is. the measured distance from the camera to the object is converted into the model coordinate. The facets created from the point. cloud of the model coordinate is used for rendering the scanned model by using the graphic library such as OpenGL. The unmatched points having no validate matching points are interpolated from the validate matching points of the vicinity epipolar lines.

  • PDF