• Title/Summary/Keyword: 3차원 선량평가

Search Result 132, Processing Time 0.026 seconds

A Study on Trust and Commitment between Buyer and Supplier of Industrial Parts, and Their Usage of Information Technology (산업재 부품 구매자와 공급자의 신뢰와 몰입, 그리고 정보기술의 이용에 관한 연구)

  • Kim, Jong-Hun;Yun, Hui-Taek
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2006.08a
    • /
    • pp.47-68
    • /
    • 2006
  • This study aims to determine the association structure of the behavioral relationship variables, such as trust, commitment, cooperation, communication and coercive power, in the relationship between the buyers and suppliers of industrial parts. It also investigates the impact of the use of IT technologies on the relationships quality. Data was collected from 216 part suppliers of machinery, electronics and automobiles located in Incheon. Data supported all of the proposed hypotheses. First, it was confirmed that parts suppliers' trust in buyers leads to the commitment into relationships with buyers. Second, cooperation and communication showed a positive influence on parts suppliers' trust in buyers, and coercive power gave a negative influence on trust. Third, the use of IT technologies like Internet and E-Mail between parts suppliers and buyers was verified to have generally a positive influence on the quality of relationships. At the same time, cooperation and communication were confirmed to have a positive influence on each other, and cooperation and coercive power as well as communication and coercive power were confirmed to have negative influence on each other. This study is a pioneering attempt to examine the relationships between suppliers and buyers of industrial parts, and the influence IT technologies on the relationship quality. Also, the findings will be practically much helpful to find how to reinforce the relationships between parts suppliers and buyers.

  • PDF

Evaluation of Reasonable $^{18}F$-FDG Injected Dose for Maintaining the Image Quality in 3D WB PET/CT (PET/CT 검사에서 영상의 질을 유지하기 위한 적정한 $^{18}F$-FDG 투여량의 평가)

  • Moon, A-Reum;Lee, Hyuk;Kwak, In-Suk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2011
  • Purpose: $^{18}F$-FDG injected dose to the patient is quite different between the recommended dose from manufacturer and the actual dose applied to each of hospitals. injection of inappropriate $^{18}F$-FDG dose may not only increase the exposed dose to patients but also reduce the image quality. we thus evaluated the proper $^{18}F$-FDG injected dose to decrease the exposed dose to patients considering the image quality. Materials And Methods: NEMA Nu2-1994 phantom was filled with $^{18}F$-FDG increasing hot cylinder radioactivity concentration to 1, 3, 5, 7, 9 MBq/kg based on the ratio of 4:1 between the hot cylinder and background activity. after completing the transmission scan using ct, emission scan was acquired in 3D mode for 2 minutes 30 seconds/bed. ROI was set up on hot cylinder and background radioactivity region. after measuring $SUV_{max}$ those regions, then analyzed SNR at the points. clinical experiment has been conducted the object of patients who have came to smc from november 2009 to august 2010, 97 patients without having a hepatic lesions were selected. ROI was set up in the liver and thigh area. after measuring $SUV_{max}$, the image quality was compared following the injected dose. Results: in phantom study, as the injected radioactivity concentration per unit mass was 1, 3, 5, 7, 9 MBq/kg, $SUV_{max}$ was 23.1, 24.1, 24.3, 22.8, 23.6 and SNR was shown 0.48, 0.54, 0.56, 0.55, 0.55. according to increment of the injected dose, $SUV_{max}$ and SNR was increased under 5 MBq/kg but they were decreased over 7 MBq/kg. in case of clinical experiment, as increased the injected radioactivity concentration per unit mass was 4.72, 5.34, 6.16, 7.41, 8.68 MBq/kg, $SUV_{max}$ was 2.68, 2.67, 2.26, 1.88, 1.95 and SNR was shown 0.52, 0.53, 0.46, 0.46, 0.44. if the injected dose exceeds 5 MBq/kg, showed a decrease pattern as phantom study. Conclusion: increasing $^{18}F$-FDG injected dose considered patient's body weight improve image quality within a certain range. if it exceeds the range, it can be reduced image quality due to random and scatter coincidences. this study indicates that the optimal injected dose was 5 MBq/kg per unit mass the injected radioactivity concentration in 3d wb pet/ct.

  • PDF

Comparison of Digital Mammography and Digital Breast Tomosynthesis (디지털 유방촬영기기와 3차원 디지털 유방단층영상합성기기의 비교연구)

  • Kim, Ye-Seul;Park, Hye-Suk;Choi, Jae-Gu;Choi, Young-Wook;Park, Jun-Ho;Lee, Jae-Jun;Kwak, Su-Bin;Kim, Eun-Hye;Kim, Ju-Yeon;Jung, Hyun-Jung;Lee, Haeng-Hwa;Bae, Gyu-Won;Lee, Mi-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.261-268
    • /
    • 2012
  • Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.

Evaluation on the Accuracy of Targeting Error Correction Through the Application of Target Locating System in Robotic CyberKnife (로봇 사이버나이프에서 위치인식시스템을 이용한 Targeting Error값 보정의 정확성 평가)

  • Jeong, Young-Joon;Jung, Jae-Hong;Lim, Kwang-Chae;Cho, Eun-Ju
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose is to evaluate the accuracy of correcting the targeting error through the Target Location System (TLS) for the location change error of the reference point which arises from the movement or motion of patient during the treatment using the CyberKnife. Materials and Methods: In this test, Gafchromic MD-55 film was inserted into the head and neck phantom to analyze the accuracy of the targeting, and then the 6 MV X-ray of CyberKnife (CyberKnife Robotic Radiosurgery System G4, Accuray, US) was irradiated. End to End (E2E) program was used to analyze the accuracy of targeting, which is provided by Accuray Corporation. To compute the error of the targeting, the test was carried out with the films that were irradiated 12 times by maintaining the distance within the rage of $0{\pm}0.2\;mm$ toward x, y, z from the reference point and maintaining the angle within the rage of $0{\pm}0.2^{\circ}$ toward roll, pitch, yaw, and then with the films which were irradiated 6 times by applying intentional movement. And the correlation in the average value of the reference film and the test film were analyzed through independent samples t-test. In addition, the consistency of dose distribution through gamma-index method (dose difference: 3%) was quantified, compared, and analyzed by varying the distance to agreement (DTA) to 1 mm, 1.5 mm, 2 mm, respectively. Results: E2E test result indicated that the average error of the reference film was 0.405 mm and the standard deviation was 0.069 mm. The average error of the test film was 0.413 mm with the standard deviation of 0.121 mm. The result of independent sampling t-test for both averages showed that the significant probability was P=0.836 (confidence level: 95%). Besides, by comparing the consistency of dose distribution of DTA through 1 mm, 1.5 mm, 2 mm, it was found that the average dose distribution of axial film was 95.04%, 97.56%, 98.13%, respectively in 3,314 locations of the reference film, consistent with the average dose distribution of sagittal film that was 95.47%, 97.68%, 98.47%, respectively. By comparing with the test film, it was found that the average dose distribution of axial film was 96.38%, 97.57%, 98.04%, respectively, at 3,323 locations, consistent with the average dose distribution of sagittal film which was 95.50%, 97.87%, 98.36%, respectively. Conclusion: Robotic CyberKnife traces and complements in real time the error in the location change of the reference point caused by the motion or movement of patient during the treatment and provides the accuracy with the consistency of over 95% dose distribution and the targeting error below 1 mm.

  • PDF

A Comprehensive Computer Program for Monitor Unit Calculation and Beam Data Management: Independent Verification of Radiation Treatment Planning Systems (방사선치료계획시스템의 독립적 검증을 위한 선량 계산 및 빔데이터 관리 프로그램)

  • Kim, Hee-Jung;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Kim, Jung-In;Lee, Sang-Won;Oh, Heon-Jin;Lim, Chun-Il;Kim, Il-Han;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.231-240
    • /
    • 2008
  • We developed a user-friendly program to independently verify monitor units (MUs) calculated by radiation treatment planning systems (RTPS), as well as to manage beam database in clinic. The off-axis factor, beam hardening effect, inhomogeneity correction, and the different depth correction were incorporated into the program algorithm to improve the accuracy in calculated MUs. A beam database in the program was supposed to use measured data from routine quality assurance (QA) processes for timely update. To enhance user's convenience, a graphic user interface (GUI) was developed by using Visual Basic for Application. In order to evaluate the accuracy of the program for various treatment conditions, the MU comparisons were made for 213 cases of phantom and for 108 cases of 17 patients treated by 3D conformal radiation therapy. The MUs calculated by the program and calculated by the RTPS showed a fair agreement within ${\pm}3%$ for the phantom and ${\pm}5%$ for the patient, except for the cases of extreme inhomogeneity. By using Visual Basic for Application and Microsoft Excel worksheet interface, the program can automatically generate beam data book for clinical reference and the comparison template for the beam data management. The program developed in this study can be used to verify the accuracy of RTPS for various treatment conditions and thus can be used as a tool of routine RTPS QA, as well as independent MU checks. In addition, its beam database management interface can update beam data periodically and thus can be used to monitor multiple beam databases efficiently.

  • PDF

Accuracy Evaluation of Pre- and Post-treatment Setup Errors in CBCT-based Stereotactic Body Radiation Therapy (SBRT) for Lung Tumor (CBCT 기반 폐 종양 정위 신체 방사선 요법(SBRT)에서 치료 전·후 set up 에러의 정확도 평가)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.861-867
    • /
    • 2021
  • Since SBRT takes up to 1 hour from 30 minutes to treatment fraction once or three to five times, there is a possibility of setup error during treatment. To reduce these set-up errors and give accurate doses, we intend to evaluate the usefulness of pre-treatment and post-treatment error values by imaging CBCT again to determine postural movement due to pre-treatment coordinate values using pre-treatment CBCT. On average, the range of systematic errors was 0.032 to 0.17 on the X and Y,Z axes, confirming that there was very little change in movement even after treatment. Tumor centripetal changes (±SD) due to respiratory tuning were 0.11 (±0.12) cm, 0.27 (±0.15) cm, and 0.21 cm (±0.31 cm) in the X, Y and Z directions. The tumor edges ±SD were 0.21 (±0.18) cm, 0.30 (±0.23) cm, and 0.19 cm (±0.26) cm in the X, Y and Z directions. The (±SD) of tumor-corrected displacements were 0.03 (±0.16) cm, 0.05 (±0.26) cm, and 0.02 (±0.23) cm in RL, AP, and SI directions, respectively. The range of the 3D vector value was 0.11 to 0-.18 cm on average when comparing pre-treatment and CBCT, and it was confirmed that the corrected set-up error was within 0.3 cm. Therefore, it was confirmed that there were some changes in values depending on some older patients, condition on the day of treatment, and body type, but they were within the significance range.

Image Based Quality Assurance of Range Compensator for Proton Beam Therapy (양성자치료용 보상체의 영상기반 정도 관리 기반 프로그램 개발)

  • Kim, Jin-Sung;Yoon, Myong-Geun;Kim, Dong-Wook;Lim, Young-Kyung;Kwak, Jung-Won;Park, So-Ah;Shin, Dong-Ho;Shin, Jung-Wook;Lee, Se-Byeong;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The main benefit of proton therapy over photon beam radiotherapy is the absence of exit dose, which offers the opportunity for highly conformal dose distributions to target volume while simultaneously irradiating less normal tissue. For proton beam therapy two patient specific beam modifying devices are used. The aperture is used to shape the transverse extension of the proton beam to the shape of the tumor target and a patient-specific compensator attached to the block aperture when required and used to modify the beam range as required by the treatment plan for the patient. A block of range shifting material, shaped on one face in such a way that the distal end of the proton field in the patient takes the shape of the distal end of the target volume. The mechanical quality assurance of range compensator is an essential procedure to confirm the 3 dimensional patient-specific dose distributions. We proposed a new quality assurance method for range compensator based on image processing using X-ray tube of proton therapy treatment room. The depth information, boundaries of each depth of plan compensatorfile and x-ray image of compensator were analyzed and presented over 80% matching results with proposed QA program.

  • PDF

The Use of Normal Tissue Complication Probability to Predict Radiation Hepatitis (간암의 정상조직손상확률을 이용한 방사선간염의 발생여부 예측가능성에 관한 연구)

  • Keum Ki Chang;Seong Jinsil;Suh Chang Ok;Lee Sang-wook;Chung Eun Ji;Shin Hyun Soo;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.277-282
    • /
    • 2000
  • Purpose : Though It has been known that the to tolerance of the liver to external beam irradiation depends on the irradiated volume and dose, few data exist which Quantify this dependence. However, recently, with the development of three dimensional (3-D) treatment planning, have the tools to Quantify the relationships between dose, volume, and normal tissue complications become available. The objective of this study is to investigate the relationships between normal tissue complication probabili쇼 (WCP) and the risk of radiation hepatitis for patients who received variant dose partial liver irradiation. Materials and Methods : From March 1992 to December 1994, 10 patients with hepatoma and 10 patients with bile duct cancer were included in this study. Eighteen patients had normal hepatic function, but 2 patients (prothrombin time 73$\%$, 68$\%$) had mild liver cirrhosis before irradiation. Radiation therapy was delivered with 10MV linear accelerator, 180$\~$200 cGy fraction per day. The total dose ranged from 3,960 cGy to 6,000 cGy (median dose 5,040 cGy). The normal tissue complication probability was calculated by using Lyman's model. Radiation hepatitis was defined as the development of anicteric elevation of alkaline phosphatase of at least two fold and non-malignant ascites in the absence of documented progressive. Results: The calculated NTCP ranged from 0.001 to 0.840 (median 0.05). Three of the 20 patients developed radiation hepatitis. The NTCP of the patients with radiation hepatitis were 0.390, 0.528, 0.844(median : 0.58$\pm$0.23), but that of the patients without radiation hepatitis ranged fro 0.001 to 0.308 (median .0.09$\pm$0.09). When the NTCP was calculated by using the volume factor of 0.32, a radiation hepatitis was observed only in patients with the NTCP value more than 0.39. By contrast, clinical results of evolving radiation hepatitis were not well correlated with NTCP value calculated when the volume factor of 0.69 was applied. On the basis of these observations, the volume factor of 0.32 was more correlated to predict a radiation hepatitis. Conclusion : The risk of radiation hepatitis was increased above the cut-off value. Therefore the NTCP seems to be used for predicting the radiation hepatitis.

  • PDF

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images (전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가)

  • Kim, Sungmin;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Brain computed tomography (CT) is useful for brain lesion diagnosis, such as brain hemorrhage, due to non-invasive methodology, 3-dimensional image provision, low radiation dose. However, there has been numerous misdiagnosis owing to a lack of radiologist and heavy workload. Recently, object detection technologies based on artificial intelligence have been developed in order to overcome the limitations of traditional diagnosis. In this study, the applicability of a deep learning-based YOLOv5s model was evaluated for brain hemorrhage detection using brain CT images. Also, the effect of hyperparameters in the trained YOLOv5s model was analyzed. The YOLOv5s model consisted of backbone, neck and output modules. The trained model was able to detect a region of brain hemorrhage and provide the information of the region. The YOLOv5s model was trained with various activation functions, optimizer functions, loss functions and epochs, and the performance of the trained model was evaluated in terms of brain hemorrhage detection accuracy and training time. The results showed that the trained YOLOv5s model is able to provide a bounding box for a region of brain hemorrhage and the accuracy of the corresponding box. The performance of the YOLOv5s model was improved by using the mish activation function, the stochastic gradient descent (SGD) optimizer function and the completed intersection over union (CIoU) loss function. Also, the accuracy and training time of the YOLOv5s model increased with the number of epochs. Therefore, the YOLOv5s model is suitable for brain hemorrhage detection using brain CT images, and the performance of the model can be maximized by using appropriate hyperparameters.