• Title/Summary/Keyword: 3차원 구름 렌더링

Search Result 6, Processing Time 0.027 seconds

GPU-based modeling and rendering techniques of 3D clouds using procedural functions (절차적 함수를 이용한 GPU기반 실시간 3D구름 모델링 및 렌더링 기법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-422
    • /
    • 2019
  • This paper proposes a GPU-based modeling and rendering of 3D clouds using procedural functions. The formation of clouds is based on modified noise function made with fbm(Fractional Brownian Motion). Those noise values turn into densities of droplets of liquid water, which is a critical parameter for forming the three different types of clouds. At the rendering stage, the algorithm applies the ray marching technique to decide the colors of cloud using density values obtained from the noise function. In this process, all lighting attenuation and scattering are calculated by physically based manner. Once we have the clouds, they are blended on the sky, which is also rendered physically. We also make the clouds moving in the sky by the wind force. All algorithms are implemented and tested on GPU using GLSL.

Effective Ray-tracing based Rendering Methods for Point Cloud Data in Mobile Environments (모바일 환경에서 점 구름 데이터에 대한 효과적인 광선 추적 기반 렌더링 기법)

  • Woong Seo;Youngwook Kim;Kiseo Park;Yerin Kim;Insung Ihm
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.93-103
    • /
    • 2023
  • The problem of reconstructing three-dimensional models of people and objects from color and depth images captured by low-cost RGB-D cameras has long been an active research area in computer graphics. Color and depth images captured by low-cost RGB-D cameras are represented as point clouds in three-dimensional space, which correspond to discrete values in a continuous three-dimensional space and require additional surface reconstruction compared to rendering using polygonal models. In this paper, we propose an effective ray-tracing based technique for visualizing point clouds rather than polygonal models. In particular, our method shows the possibility of an effective rendering method even in mobile environment which has limited performance due to processor heat and lack of battery.

3D Cloud Animation using Cloud Modeling Method of 2D Meteorological Satellite Images (2차원 기상 위성 영상의 구름 모델링 기법을 이용한 3차원 구름 애니메이션)

  • Lee, Jeong-Jin;Kang, Moon-Koo;Lee, Ho;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.147-156
    • /
    • 2010
  • In this paper, we propose 3D cloud animation by cloud modeling method of 2D images retrieved from a meteorological satellite. First, on the satellite images, we locate numerous control points to perform thin-plate spline warping analysis between consecutive frames for the modeling of cloud motion. In addition, the spectrum channels of visible and infrared wavelengths are used to determine the amount and altitude of clouds for 3D cloud image reconstruction. Pre-integrated volume rendering method is used to achieve seamless inter-laminar shades in real-time using small number of slices of the volume data. The proposed method could successfully construct continuously moving 3D clouds from 2D satellite images at an acceptable speed and image quality.

지형정보를 이용한 VR 환경구축

  • 박지원;고연희
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.125-125
    • /
    • 2001
  • 실 지형정보를 이용한 3D 가상환경은 사용자에게 좀 더 현실에 가까운 교육환경을 제공한다. 3D 가상환경에 사용되는 지형정보는 mesh를 생성하기 위한 고도 data와 mapping을 위한 위성영상이나 항공사진 등이 사용된다. 고도 데이터는 DEM,DTED와 같은 데이터 포맷이 있는데 해상도에 따라 초단위 또는 M 단위로 다양하게 분류되어 있으며 위성영상이나 항공사진도 해상도에 따라 50M∼10Cm 까지 다양하여 사용목적에 맞는 데이터 선택이 필요하다. 고도데이터와 mapping 데이터를 이용하여 기본적인 3D 지형을 생성한 후에 안개나 비, 눈, 빛, 구름과 같은 기상환경을 시뮬레이션하거나 건물이나 이정표, 또는 텍스트 같은 사용자 정보를 Vector overlay 하여 좀 더 현실감 있는 3D 가상환경을 만들 수 있다. 최근에는 인터넷이 일반화되면서 네트웍을 통해 지명데이터를 전송하고 렌더링 하고자 하는 요구가 발생하고 있다. 그러나 3차원 가상환경을 위한 지형 데이터는 2D 데이터에 비해 크기가 크고 고사양의 하드웨어사양을 필요로 하여 네트웍을 통해 전송하고 랜더링 하기에는 여러 가지 제약이 따른다. 이러한 재약을 극복하기 위해 데이터를 한꺼번에 전송하지 않고 점진적으로 전송하고자 하는 연구가 많이 있어 왔으며 점진적 메쉬나 딜로니 규칙에 기반한 TIN 압축 점진적 시각화 기법, DEM 웨이블릿 변환을 적용한 저장, 전송 렌더링 하고자 하는 연구가 시도되어 왔다.

  • PDF

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

A Study on Improving the Quality of DIBR Intermediate Images Using Meshes (메쉬를 활용한 DIBR 기반 중간 영상 화질 향상 방법 연구)

  • Kim, Jiseong;Kim, Minyoung;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.822-823
    • /
    • 2014
  • The usual method of generating an image for a multiview display system requires acquiring a color image and depth information of a reference camera. Then, intermediate images, generated using DIBR method, will be captured at a number of different viewpoints and composed to construct an multiview image. When such intermediate views are generated, several holes would be shown because some hidden parts are shown when the screenshot is taken at different angle. Previous research tried to solve this problem by creating a new hole-filling algorithm or enhancing the depth information. This paper describes a new method of enhancing the intermediate view images by applying the Ball Pivoting algorithm, which constructs meshes from a point cloud. When the new method is applied to the Microsoft's "Ballet" and "Break Dancer" data sets, PSNR comparison shows that about 0.18~1.19 increasement. This paper will explaing the new algorithm and the experiment method and results.

  • PDF