• Title/Summary/Keyword: 3차원파동장

Search Result 35, Processing Time 0.025 seconds

Powering Analysis of Oscillating Foil Moving in Propagating Wave Flow Field (전파하는 파동유장 중 전진하며 동요하는 2차원 날개의 동력해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • In this study, a two-dimensional oscillating foil with forward speed in a propagating wave flow field was considered. The time-mean power to maintain the heaving and pitching motions of the foil was analyzed using the perturbation theory in an ideal fluid. The power, which was a non-linear quantity of the second-order, was expressed in terms of the quadratic transfer functions related to the mutual product of the heaving and pitching motions and incoming vertical flow. The effects of the pivot point and phase difference among the disturbances were studied. The negative power, which indicates energy extraction from the fluid, is shown as an example calculation.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.

Linear and Nonlinear Wave Pressure Distributions Acting on Vertical Caisson of Large Size in 3-Dimensional Wave Fields (3차원파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구)

  • 김도삼;신동훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • Goda formula (Goda, 1973) has been used in the determination of wave pressures acting on a large size caisson such as the pier of the cable stayed bridge at sea. Goda formula, however, is to evaluate the wave pressures acting the infinite vertical caisson of composite breakwater so that it can`t be applied to a large caisson with finite width and length because of diffraction effects. In the present study, three dimensional nonlinear frequence domain method based on perturbation method and boundary integral method is applied to the computation of the linear and nonlinear wave pressures acting on the front of a large size caisson under the variation of its width and length, and angle of incident wave. The numerical results are compared to Goda\`s ones, and then the characteristics of wave pressure distributions acting on a large size caisson are discussed.

  • PDF

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Numerical Simulation of Irregular Airflow within Wave Power Converter Using OWC by Action of 3-Dimensional Irregular Waves (3차원불규칙파동장하의 진동수주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.189-202
    • /
    • 2012
  • An Oscillating Water Column (OWC) wave generation system uses the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. It is well known that OWC is one of the most efficient devices to harness wave power. This study estimated the air flow velocity from the time variation of the water level fluctuation in the air chamber under regular wave conditions using 3-dimensional numerical irregular wave tank (3D-NIT) model that can simulate the 3-dimensional irregular wave field. The applicability of the 3D-NIT model was validated by comparing numerically predicted air flow velocities with hydraulic experimental results. In addition, the characteristics of air flow frequency spectrum variation due to the incident frequency spectrum change, and the variations of frequency spectrum and wave reflection due to the existence of converter inside the air chamber were discussed. It is found that the phase difference exists in between the air flow velocity and the water level fluctuation inside the air chamber, and the peak frequency of the spectrum in water level fluctuation is amplified by the resonance in the air chamber.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Numerical Simulation of Velocity Fields and Vertex Generation around the Submerged Breakwater on the Sloped Bottom (경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • The study of velocity fields and vortex generation around the submerged breakwater can be utilized as materials related to understanding of wave dissipation mechanism, sediment transport, and stability of structure. In the present study, two-dimensional numerical wave flume, based on the VOF method to trace free surface, developed by Kim et al.(2001, 2002) was used to numerically simulate velocity fields and vortex generation around the impermeable submerged breakwater installed at the uniform bottom. Especially, the characteristics of vortex generation due to the geometry of the structure and incident wave conditions are examined through the analysis of averaged-velocity fields around the impermeable submerged breakwater. From the numerical simulations, it is confirmed that a counter clockwise vortex is formed in front of the structure and a clockwise vortex develops behind the structure. Also, incident wave height and period have an sensitive effect on the strength of vortex.

A Study of Current Driven Electrostatic Instability on the Auroal Zone -Based on Particle Simulation Methods- (오로라 지역(Auroral Zone)에서의 전류에 의한 정전기적 불안정성 연구 -입자모의 실험방법을 중심으로-)

  • Kim, S.Y.;Okuda, H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.71-79
    • /
    • 1986
  • According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics) has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimensional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.

  • PDF

Variation Characteristics of Irregular Wave Fields around 3-Dimensional Low-Crested-Breakwater (3차원 저마루구조물(LCS) 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • On the many coasts of South Korea, including the eastern side, it has been recently increasing the coastal disaster such as the severe coastal erosion and road damage swept away by the wave. As one of the alternatives to prevent the coastal disaster, it has been widely studied the coastal disaster reduction method by the Low-Crested Structure (LCS) in the many countries including several European countries. In this study, the olaFLow model is used to simulate the permeable LCS and wave field of the LCS through the three-dimensional irregular waves numerical analysis on the basis of the previous research. From the numerical analysis, it is evaluated the Hrms, nearshore current and time-averaged turbulent kinetic energy. In addition, the pattern of nearshore current and spatial distribution of time-averaged turbulent kinetic energy are compared with the case of submerged breakwater under the irregular wave fields. As one of significant results, it is confirmed that the pattern of nearshore current is different with the case of submerged breakwater.