• Title/Summary/Keyword: 3차원성형해석

Search Result 96, Processing Time 0.025 seconds

Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding (사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향)

  • Lee, S.C.;Ko, J;Youn, J.R.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.217-226
    • /
    • 1998
  • The anisotropy caused by the fiber orientation, which is inevitably generated by the flow during injection molding of short fiber reinforced polymers, greatly influences dimensional accuracy, mechanical properties, and other quality of the final product. Since the filling stage of the injection molding process plays a vital role in determining fiber orientation, an accurate analysis of flow field for the filling stage is needed. Unbalanced filling occurs when a complex or a multi-cavity mold is used leading to development of regions where the fiber suspension is under compression. It is impossible to make an accurate calculation of the flow field during filling with the analysis assuming incompressible fluid. A mold with four cavities with different filling times was produced to compare the numerical analysis results with the experimental data. There was a good agreement between the experimental and theoretical results when the compressibility of the polymer melt was considered for the numerical simulation. The fiber orientation states for compressible and incompressible fluids were also compared qualitatively as well as quantitatively in this study.

  • PDF

Performance Analysis of Interior Ballistics using 1-D Numerical Method (1차원 수치 해석을 통한 강내탄도 성능해석)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.241-249
    • /
    • 2012
  • Performance analysis of the interior ballistics has been conducted using the 1-D numerical code called IBcode according to the various conditions such as length of ignition-gas injector, amount of ignition-gas, mass of projectile, and drag force of projectile. In case of the length of ignition-gas injector, the 25~100 % of the full-injector length has been considered as well as the mass & mass flow of the ignition-gas. The mass of the projectile 5~70 kg and its drag force of 0~69 MPa have been also considered. Variables such as breech & base pressure, negative differential pressure and muzzle velocity for the performance analysis have been sorted, too. Firing conditions for the optimal performance have been investigated through these variables.

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

2-Dimensional Finite Element Analysis of Forming Processes of Automotive Panels Considering Bending Effects (굽힘 효과를 고려한 자동차 패널 성형 공정의 2차원 유한 요소 해석)

  • 김준보;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.27-38
    • /
    • 1996
  • A two-dimensional FEM program, which considers bending effects in the membrane fromulation, was developed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die of automotive panels. For the evaluation of bending effects with membrane elements, the bending equivalent forces and stiffnesses are calculated from the bending moment computed using the changes in curvature of the formed shape of two membrane ones. The curves depicted with 3 nodes are described by a circle, a quadratic equation, and a cubic equation, respectively, and in the simulation of the stretch/draw sections of an automotive inner panel, three different description results are compared each other. Also, the bending results are compared with membrane results and measurements in order to verify the validity of the developed program.

  • PDF

Finite Element Analysis on Formability of Parabolic Shape (포물선형상의 성형성에 관한 유한요소해석)

  • Chung, Sang-Won;Lee, Kyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.677-682
    • /
    • 2012
  • For the product with small diameter, long column, and parabolic shape, the forging formability of the high-carbon steel wire rod was investigated in this study. By using the three-dimensional finite element method, the formability of wire was reviewed by forming analysis for the desired parabolic shape of local part. Analysis results due to forging direction, forging velocity, friction coefficient and constraint location were also investigated. On the basis of these results, it is noted that the forging direction has the big influence when the product with long column is forged. As the forging velocity increases, buckling tends to be limited and formability of parabolic shape is improved. By constraining the lower parabolic shape part to suppress plastic strain, the effect depending on friction coefficient is not almost appeared. And good parabolic shape is obtained at the region of the forging velocity of more than 0.5 m/s.

Finite element simulation of sheet metal forming by using non-parametric tool description with locally refined patches (국소 분할된 패치를 갖는 비매개변수 금형묘사법을 이용한 3차원 박판성형공정해석)

  • 윤정환;양동열;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.162-169
    • /
    • 1995
  • An improved nonparametric tool description based on successive refined monparametric patches is proposed and therlated criterion for refinement is also discussed . In the proposed sheme, any required order of tool surface conformity can be achieved by employing successive refinements accoring to the suggested criterion. By using the suggested adaptive tool refinement technique based on the nonparametric patch tool description, the locally refined nonparametric tool surface with economic memory size and sufficient accuracy as well as with favorable charateristics for contact treatment can be obtained directly form the parametric patch related with commerical CAD system. Computation is carried out for a chosen complex sheet forming example of an actual autobody panel in order to verify the validity and the efficiency of the developed tool surface description.

  • PDF

Numerical Analysis for Injection Molding of Precision Electronics Parts Using Three-Dimensional Solid Elements (3차원 입체요소를 사용한 정밀 전자부품의 사출성형 해석)

  • Park, K.;Park, J.H.;Choi, S.R.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.414-422
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The Proposed approach is then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

Numerical Analysis for Injection Molding of Precision Electronics Parts using Three-Dimensional Solid Elements (3차원 입체요소를 사용한 정밀 전자부품의 사출성형해석)

  • Park K.;Park J. H.;Choi S. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.68-75
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The proposed approach are then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

  • PDF

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

Characterization and Prediction of Elastic Constants of Twisted Yarn Composites (Twisted Yarn 복합재료의 물성치 시험 및 탄성계수 예측)

  • 변준형;이상관;엄문광;김태원;배성우
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2002
  • A stiffness model has been proposed to predict elastic constants of twisted yam composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yam twist angles were tested, and strength and Young's modulus under tensile, compressive, and shear loading have been obtained. The sample was fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yam.