• Title/Summary/Keyword: 3차원성형해석

Search Result 96, Processing Time 0.028 seconds

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

A Study on Automation of Steel Plate Forming by Heating Method (열간가공에 의한 강판의 곡 가공 자동화 시스템)

  • B.I. Lee;H.S. Yoo;G.G. Byun;H.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.34-44
    • /
    • 2002
  • Approximately 70 percent of shop's hull plate consists of three-dimensional curved shell. Concerning with the research on the automation of plate forming many studies have been carried out for the last decade. The purpose of this study is to develop the simulator of heating on the basis of the reasonable mechanical model representing a heating phenomenon. The beating experiment has been carried out with varying parameters influencing on the results of heating information at the kinematics analysis, simulatorestimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variable.

3-Dimensional Finite Element Analysis of Thermoforming Processes (열성형공정의 3차원 유한요소해석)

  • G.J. Nam;D.S. Son;Lee, J.W.
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.18-27
    • /
    • 1999
  • Predicting the deformation behaviors of sheets in thermoforming processes has been a daunting challenge due to the strong nonlinearities arising from very large deformations, mold-polymer contact condition and hyperelasticity constitutive equations. Nonlinear numerical analysis is always required to face this challenge especially for realistic processing conditions. In this study a 3-D algorithm and the membrane approximation are developed for thermoforming processes. The constitutive equation is expressed in terms of the 2nd Piola-Kirchhoff stress tensor and the Cauchy-Green deformation tensor. The 2-term Mooney-Rivlin model is used for the material model equation. The algorithm is established by the finite element formulation employing the total Lagrangian coordinate. The deformation behavior and the stress distribution results of 3-D algorithm with various point boundary conditions are compared to those of the membrane approximation algorithm. Also, the slip boundary condition and the no-slip boundary condition are applied for the systems that have molds. Finally, the effect of sheet temperatures on the final thickness distribution is investigated for the ABS material.

  • PDF

Three Dimensional Strength Characterisics of Compressible Sand (압축성 모래의 3차원 전단강도 특성)

  • Park, Byeong-Gi;Jeong, Jin-Seop;Im, Seong-Cheol
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.65-76
    • /
    • 1990
  • A series of consolidated drained and untrained cubical triaxial tests were performed to investigate three dimensional strength characteristics of compressible sand. All specimens, which are formed by deposisting a fine sand loosely, were used. Failure strength in terms of effective stress analysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion The adjusted effective frictional angles obtained by the stress state projected on the same octahedral plane showed almost same value, while the measured effective frictional angles showed considerable difference depending on the drainage conditions. Results of total stress analysis in undrained test turned out to fit Tresca's failure criterion well, but results of effective stress analysis turned out to fit Lade's failure criterion well.

  • PDF

A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel (자동차패널 성형공정의 3차원 유한요소해석에 관한 연구)

  • 이종문;김종원;안병직;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.75-86
    • /
    • 1996
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blanks own weight, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw die in the die try-out, though effects of mesh size and drawbead resistance force on the numerical accuracy are much sensitive. For the intensive application to draw-die design and try-out, the experimental know-hows about the forming variables such as friction coefficient, punch velocity, drawbead force, etc are necessary.

Analysis of Three Dimensional Mold-Filling Process in Injection Molding (사출성형의 3차원 충전공정 해석)

  • Choi K. I.;Koo B. H.;Cha B. S.;Park H. P.;Rhee B. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.269-272
    • /
    • 2005
  • For the three decades, the mold-filling of injection molding process was modeled as Hele-Shaw model. However, this model can not consider the 3D effect. In this paper, numerical simulations of three dimensional mold-filling during the filling phase were performed. The governing equations were discretized by segregated finite element method, which used equal order interpolation for pressure and velocity fields. The iterative linear equation solver (JCG, SOR) was employed for the solution of the momentum and pressure equations. Volume of Fluid (VOF) was employed for the melt front advancement. To check the validity of the numerical results, the results were compared with the experimental ones. The agreements between the experiment and the numerical results were found to be satisfactory.

  • PDF

A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel (자동차 패널 성형 공정의 3차원 유한요소 해석에 관한 연구)

  • 이종문;김종원;안병직;금영탁
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.152-160
    • /
    • 1997
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blank own weigth, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw dies in the die try-out, though effects of mesh size and drawbead resistance force on the try-out, the experimental knowhows about the forming variables such as friction coefficient punch velocity, drawbead force, etc are necessary.

  • PDF

Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound (열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석)

  • Kim, Soo-Young;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

Three Dimensional Thermal Cycle Analysis of Mold in Repeated Forming Process of TV Glass (TV 유리의 반복 성형공정에서 3차원 금형 열사이클 해석)

  • Hwang, Jung-Hea;Choi, Joo-Ho;Kim, Jun-Bum
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.192-198
    • /
    • 2000
  • Three dimensional thermal cycle analysis of the plunger is carried out in repeated forming process of the TV glass, which is continued work of two dimensional analysis where an efficient method has been proposed. The plunger undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state having same temperature history at every cycle. Straightforward analysis of this problem brings about more than 90 cycles to get reasonable solution. An exponential function fitting method is proposed, which finds exponential function to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the fitted value at infinite time. Number of cases are analyzed using the proposed method and compared to the result of straightforward repetition, from which one finds that the method always reaches nearly convergent solution within $9{\sim}12$ cycles, but turns around afterwards without further convergence. Two step use is found most efficient, in which the exponential fitting is carried out fer the first 12 cycles, followed by simple repetition, which shows fast convergence expending only 6 additional cycles to get the accuracy within 2 error. This reduces the computation cycle remarkably from 90 to 18, which is 80% reduction. From the parametric studies, one reveals that the overall thermal behavior of the plunger in terms of cooling parameters and time is similar to that of 2 dimensional analysis.

  • PDF