• Title/Summary/Keyword: 3점 굴곡 시험

Search Result 22, Processing Time 0.026 seconds

THE COMPARISON OF RELATIVE RELIABILITY ON BIAXIAL AND THREE POINT FLEXURAL STRENGTH TESTING METHODS OF LIGHT CURING COMPOSITE RESIN (광중합형 레진의 3점 굴곡 강도와 이축 굴곡 강도 측정 방법에 대한 상대적 신뢰도의 비교)

  • Seo, Deog-Gyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2006
  • The possibility of applying a hi-axial flexure strength test on composite resin was examined using three point and hi-axial flexure strength tests to measure the strength of the light-cured resin and to compare the relative reliability using the Weibull modulus. The materials used in this study were light-curing restorative materials, $MICRONEW^{TM},\;RENEW^{(R)}$ (Bisco, Schaumburg, USA). The hi-axial flexure strength measurements used the piston-on-3-ball test according to the regulations of the International Organization for Standardization (ISO) 6872 and were divided into 6 groups, where the radius of the specimens were 12mm (radius connecting the 3-balls: 3.75mm), 16 mm(radius connecting the 3-balls: 5mm), and the thickness were 0.5mm, 1mm, 2mn for each radius. The hi-axial flexure strength of the $MICRONEW^{TM}\;and\;RENEW^{(R)}$ were higher than the three point flexure strength and the Weibull modulus value were also higher in all of the bi-axial flexure strength groups, indicating that the hi-axial strength test is relatively less affected by experimental error. In addition, the 2 mm thick specimens had the highest Weibull modulus values in the hi-axial flexure strength test, and the $MICRONEW^{TM}$ group showed no significant statistical difference (p>0.05). Besides the 2mm $MICRONEW^{TM}$ group, each group showed significant statistical differences (p<0.05) according to the thickness of the specimen and the radius connecting the 3-balls. The results indicate that for the 2mm group, the hi-axial flexure strength test is a more reliable testing method than the three point flexure strength test.

Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post (미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향)

  • Sim, Eun-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Purpose: Many studies have shown that airborne-particle abrasion of fiber post can improve the bonding strength to resin cement. But, airborne-particle abrasion may influence the property of fiber post. The purpose of this study is to evaluate the influence of airborne-particle abrasion on flexural strength of fiber post. Materials and Methods: Two fiber-reinforced posts; DT Light Post Size 2 (1.8 mm diameter, Bisco Inc) and RelyX Fiber Post Size 3 (1.9 mm diameter, 3M ESPE); were used in this study. Each group was divided into 3 subgroups according to different surface treatments; without pretreatment: $50{\mu}m$ aluminum oxide (Cobra$^{(R)}$, Renfert): and $30{\mu}m$ aluminum oxide modified with silica (Rocatec Soft$^{(R)}$, 3M ESPE). After airborne-particle abrasion procedure, three-point bending test was done to determine the flexural strength and flexural modulus. The diameter of each posts was measured to an accuracy of 0.01 mm using a digital micrometer. There was no diameter change before and after airborneparticle abrasion. The mean flexural moduli and flexural strengths calculated using the appropriate equations. The results were statistically analyzed using One-way ANOVA and Scheffe's post-hoc test at 95% confidencial level. Results: There was no significant difference on flexural strength between groups. Conclusion: In the limitation of this study, flexural strength and flexural modulus of fiber post are not affected by airborne-particle abrasion.

Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials (여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교)

  • Yoo, Je-In;Kim, Soo-Yeon;Batbayar, Bayarchimeg;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Purpose: Direct splinting material should have high flexural strength to withstand force during mastication and low modulus of elasticity to provide some movement while force applied for relief of stress. The purpose of this study was to compare flexural strength and modulus of elasticity of several resinous splinting materials. Materials and Methods: Four materials; Super-Bond C&B, G-FIX, G-aenial Universal Flo, FiltekTM Z350 XT; were used in this study. Fifteen rectangular bar specimens of each material were prepared. Three-point bending test were performed to determine physical properties. Maximum load at fracture was recorded and flexural strength and modulus of elasticity were calculated. One-way analysis of variance (ANOVA) and Scheffe's tests at a 0.05 level of significance were conducted on all test results. Results: Statistical analysis reveals that Super-Bond C&B had significant low mean value for flexible strength and the other three materials showed no significant difference. For modulus of elasticity, Super-Bond C&B exhibited statistically lower modulus of elasticity. G-FIX presented intermediate result, showing statistically higher modulus of elasticity than Super-Bond C&B but lower than G-aenial Universal Flo and FiltekTM Z350 XT. There was no significant difference on modulus of elasticity between G-aenial Universal Flo and FiltekTM Z350 XT. Conclusion: Using a G-FIX, the newly commercially available splinting material, which shows higher fracture resistance properties comparable to flowable and restorative composite resin and a relatively flexible nature might be a beneficial for stabilizing teeth mobility.

Chemo-Mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine (DDM, DDS) Resin Casting Systems (DGEBA/방향족 아민(DDM, DDS) 경화제의 벤젠링 사이의 관능기 변화가 물성 변화에 미치는 영향에 대한 연구)

  • 명인호;정인재;이재락
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with diaminodiphenyl methane (DDM), diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work, the effect of aromatic amine curing agents. In contrast, the results show that the DGEBA/DDS cure system having the sulfone structure between the benzene rings had higher values in the conversion of epoxide, density, shrinkage (%), glass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBA/DDM cure system having methylene structure between the benzene rings, whereas the DGEBA/DDM cure system presented higher values in the maximum exothermic temperature, thermal expansion coefficient, and thermal stability. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property and stem from the effect of the conversion ratio of epoxide group. The result of fractography shows that the each grain size of the DDM/DGEBA system with feather-like structure is larger than that of the DDS/DGEBA system.

  • PDF

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

A Study on the Coating Cracking on a Substrate in Bending II : Experiment (굽힘모드하에서의 코팅크랙킹의 분석II: 실험)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.48-57
    • /
    • 2000
  • Fracture analysis of coating cracking on a substrate system described in a companion paper was applied and verified by four-point bending tests. The multiple cracking of coating was predicted using a fracture mechanics approach. The strain energy release rate (G) due to the formation of a new crack in a coating was obtained. A crack density vs. strain data of metallic and polymeric substrate was used to get the in-situ fracture toughness of coating with respect to various baking time and temperature. The $G_c$ was decreased as the baking temperature and time was increased. This paper gave insight about usefulness of four-point bending test for fracture toughness evaluation of coating and it gave a new method for in-situ coating toughness.

  • PDF

The effect of cavity configuration on the mechanical properties of resin composites (중합환경에 따른 복합레진의 물리적 성질에 관한 연구)

  • Ryu, Gil-Joo;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.3
    • /
    • pp.239-248
    • /
    • 2002
  • 이 연구의 목적은 와동의 형태가 굴곡강도와 탄성계수 등 복합레진의 물리적 성질에 미치는 영향을 평가하는 것이다. 복합레진은 Clearfil$^{TM}$ AP-X(Kuraray, Japan)와 Esthet-X$^{TM}$(Dentsply, USA)가 이용되었으며, 상아질 접착제는 Clearfil$^{TM}$ SE Bond(Kuraray, Japan)와 Prime & Bond NT$^{TM}$(Dentsply, USA)를 사용하였다. 대조군의 시편은 split steel mold(25mm$\times$2mm$\times$2mm) 내에 상기 2종류의 복합레진을 충전하여 2개의 대조군 시편을 제작하였으며, 2.4 및 3.4의 C-factor를 부여하기 위한 유리 모형와동을 제작하고, 와동 내에 상기 2종류의 복합레진을 충전하기 전 유리와동의 내면은 sandblasting 처리하고 각각의 복합레진과 동일회사 제품의 상기 상아질 접착제로 처리한 후, 복합 레진을 각각 충전하여 4개의 실험군을 제작하였다. 제작된 실험군 시편은 저속 diamond saw로 충전된 복합레진 부위의 중심부를 통과하도록 절단하여 레진기둥(25mm$\times$2mm$\times$2mm)이 되도록 제작하였다. 제작된 시편을 37$^{\circ}C$의 증류수에 24시간 동안 보관 후, 만능시험기(EZ Test, Shimadzu, Japan)를 이용하여 분당 1mm의 crosshead speed로 3점 굴곡강도를 측정하였다. 또 Linometer(R&B, Korea)를 이용하여 복합레진의 중합수축량을 측정하였으며 굴곡강도측정 후 시편의 파단면은 주사전자현미경(S-2300, Hitachi, Japan)을 이용하여 관찰하였다. 실험결과의 통계분석은 95% 수준의 one-way ANOVA/Tukey's test를 이용하여 결과를 얻었다. 실험에 이용된 2종류 복합레진의 굴곡강도와 탄성계수는 C-factor치 증가에 따라 감소하였으며, 파단면 또한 C-factor의 증가에 따라 더 불규칙해지는 양상을 나타내었다. 본 실험의 결과 hybrid형 복합레진이 micro-hybrid형 복합레진에 비해 C-factor의 영향을 더 많이 받는 것으로 나타났으며, 와동의 C-factor증가가 굴곡강도나 탄성계수와 같은 복합레진의 물리적 성질을 저하시킨다는 것을 의미하였다.

A study on Waviness of Large Discontinuity using 3D Laser Scanner (3D Laser Scanner를 이용한 대규모 불연속면의 굴곡도 측정 연구)

  • Kim, Yong;Lee, Su-Gon;Kim, Chee-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • The waviness of Large Discontinuity rock is the one of important elements that judges the stability of rock slope. When the waviness of large discontinuity is measured in the field, there are many limitations Therefore this research was carried out to measure waviness of large rock discontinuities using 3D laser scanner to supplement this problem. This research established one 3D model that actual X, Y and Z coordinates through the integrated data gained from one that calculates waviness of base lock using CAD program was compared and analyzed to that of disc-clinometer. As its results, the high reliability of results could be recognized as it belongs to mechanical tolerance $1{\sim}2^{\circ}$ and the results belong to the measured values of Mean DIP and Mean are all within $1^{\circ}$. So, the investigation method of waviness of large discontinuity rock face using 3D laser scanner was verified as more prompt, effective and reliable method than conventional direct site measuring method.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

Effects of heat treatment on the load-deflection properties of nickel-titanium wire (니켈-티타늄 와이어의 열처리에 따른 부하-변위 특성 변화)

  • Chang, Soo-Ho;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.349-359
    • /
    • 2006
  • Objective: Nickel-titanium alloy wire possesses excellent spring-back properties, shape memory and super-elasticity. In order to adapt this wire to clinical use, it is necessary to bend as well as to control its super-elastic force. The purpose of this study is to evaluate the effects of heat treatment on the load-deflection properties and transitional temperature range (TTR) of nickel-titanium wires. Methods: Nickel-titanium wires of different diameters ($0.016"\;{\times}\;0.022"$, $0.018"\;{\times}\;0.025"$ and $0.0215"\;{\times}\;0.028"$) were used. The samples were divided into 4 groups as follows: group 4, posterior segment of archwire (24 mm) without heat treatment; group 2, posterior segment of archwire (24 mm) with heat treatment only; group 3, anterior segment with bending and heat treatment; group 4, anterior segment with bending and 1 sec over heat treatment. Three point bending test was used to evaluate the change in load-deflection curve and obtained DSC (different scanning calorimetry) to check changes in $A_f$ temperature. Results: In the three point bending test, nickel-titanium wires with heat treatment only had higher load-deflection curve and loading and unloading plateau than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment had lower Af temperature than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment and bending had higher load-deflection curve than nickel- titanium wires with heat treatment and nickel-titanium wires without heat treatment. Nickel-titanium with heat treatment of over 1 sec and bending had the highest load-deflection curve. Nickel-titanium wires with heat treatment and bending had lower Af temperature, Nickel-titanium wires with heat treatment of over Af sec and bending had the lowest Af temperature. Conclusion: From the results of this study, it can be stated that heat treatment for bending of Nickel-titanium wires does not deprive the superelastic property but can cause increased force magnitude due to a higher load-deflection curve.