• Title/Summary/Keyword: 3기통엔진

Search Result 18, Processing Time 0.021 seconds

A Study on Effects of Tuning Intake and Exhaust Systems upon Engine Performance in a Driving Gasoline Car (운행 가솔린자동차 엔진성능에 미치는 튜닝 흡기 및 배기 시스템의 효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.775-784
    • /
    • 2017
  • The purpose of this study was to analyse the basic data of the engine tuning inspection by confirming the working possibility of effective engine tuning and identifying the characteristics of tuned engine that are no problem with the safety operation and environment in a driving gasoline car. The effects of tuned engine on the characteristics of air/fuel ratio and performance at a wide range of engine speeds were experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating under four types of non-tuning, and tuning 2-1, 2-2 and 2-3. The tuned parts of engine in a driving gasoline car include the intake manifold, intake pipe, air filter, exhaust manifold, exhaust pipe and silencer. In this experiment, the air-fuel ratio and torque of both non-tuned and tuned engines that one person took on board in the car with a five-speed automatic transmission were measured by the chassis dynamometer(Dynojet 224xLC). It was found that the maximum torque of tuned engine in a driving gasoline car was increased by 103.68% on average, while the maximum output was increased by 119.68% on average in comparison to the non-tuned engine.

A study on the estimation method of vibration characteristics of marine engines below 7-cylinder based on a test (실험 기반 7기통 이하 선박용 엔진 진동 특성 예측 방법에 관한 고찰)

  • Hwang, Sang-Jae;Kim, Hae-Seung;Kim, Myoung-Soo;Kim, Hyung-Jin;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.59-59
    • /
    • 2011
  • H-mode or X-mode predominates in marine engines according to the number of cylinder. Generally, H-mode noticeably happen in the engine below 7-cylinder and X-mode remarkably happen above 8-cylinder in the engine operating range. Until now, FEA (Finite Element Analysis) of 3D engine model has been mainly used to estimate the engine vibration but it is very time consuming for simulation and difficult to model simplification. Furthermore, the accuracy of simulation shows a marked difference according to modeling method. Therefore it is very difficult to have contentable result from FEA for beginners and laymen. In this paper, the estimation method based on a test has been suggested to solve the difficulty.

  • PDF

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston (터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.58-62
    • /
    • 2008
  • The purpose of this paper is to establish a standard finite element analysis model of a piston by carrying out three dimensional modeling of a series six-cylindered CNG engine's piston to forecast temperature distribution at stationary state and the following thermal stress and variation, and cross checking it with existing analysis. Also, in order to evaluate the affects of the cooling system to the piston's heat load, the paper analyzed piston's temperature and thermal stress distribution according to the cooling water temperature changes and the following variations. As a result, the maximum temperature was found at the center of the crown in the piston and the maximum thermal stress occurred from the lower part of the piston.

  • PDF

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Design and Construction of the Prototype of 25 kW Small Combine for Harvesting Miscellaneous Cereal Crops (잡곡 수확용 25 kW급 소형 콤바인 시작기 설계 제작)

  • Lee, Beom Seob;Ji, Keum Bae;Kim, Sung Chan;Yoo, Soo Nam
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.78-78
    • /
    • 2017
  • 현재 국내에 공급되고 있는 잡곡류 수확기는 보행형 예취기, 탈곡기 위주의 저능률 기계화 수준으로 고능률의 콤바인 수확기 개발이 필요하며, 특히 잡곡류가 소규모 경작지의 영세농가 위주로 재배되어 저가격의 소형 콤바인 수확기 개발이 절실히 요구되고 있다. 따라서 본 연구는 소규모 밭의 두류 및 잡곡 수확작업에 적응성이 뛰어나며, 농기계 임대사업소의 활용도를 높일 수 있고, 여성과 고령자도 쉽게 운전할 수 있어 수확작업의 노동력을 크게 절감할 수 있는 저가격의 25kW급 자주식 소형 콤바인을 개발하고자 시작기를 설계 제작하였다. 시작기의 주요부로 엔진은 25kW/2600rpm 3기통 디젤엔진을 탑재하였으며, 동력전달부는 주변속 3단, 부변속 2단의 선택맞물림 기어식의 변속장치를 이용하였다. 주행부는 궤도형으로 조향클러치와 습식 원판식 제동장치를 채용하였다. 전처리부는 선단거리 1700 mm의 디바이더와 상하좌우 수동 조절되는 회전속도 약 42 rpm의 정오각형 릴로 구성하였으며, 전처리부의 최대 승강높이는 740 mm이었다. 작물이송부는 돌기부착 오거와 체인컨베이어로 구성되어 있으며, 탈곡부는 단동형 축류식의 직경 440 mm, 길이 1180 mm의 급동과 높이 65 mm, 지름 10 mm의 46개 강봉형 급치, 격자형 수망으로 구성하였으며, 회전속도는 약 325 rpm으로 작동하도록 하였다. 선별 정선부는 요동 송풍선별식으로 곡립판, 볏짚체, 곡립체, 송풍팬으로 구성하였고 송풍팬의 회전속도는 약 850 rpm, 요동진동수는 약 5.8 Hz로 작동하도록 하였다. 곡물이송부와 재처리부는 수평이송 외경 103 mm, 수직이송 외경 110 mm의 피치가 모두 82 mm인 스크류컨베이어를 이용하였으며, 곡물탱크는 용량이 250 로 2개의 배출구로 곡물을 포대에 담도록 하였다. 그 외 시작기는 운전조작부, 유압장치부, 전기장치부 등을 갖도록 설계 제작하였다. 전체적인 기체의 크기는 길이${\times}$${\times}$높이 $3935{\times}1900{\times}2440mm$이었으며, 기체 중량은 약 1753 kg이었다. 콩 대상 기초 성능시험 결과 시작기의 작업속도는 약 0.5 m/s, 작업능률은 약 11 a/h로 나타났다.

  • PDF