• 제목/요약/키워드: 2Wheel

검색결과 1,132건 처리시간 0.033초

스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS (Engine Control TCS using Throttle Angle Control and Estimated Load Torque)

  • 강상민;윤마루;선우명호
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

표준형 의자차 제작을 위한 20대 성인의 기초조사 (A Basic Study on the Standardization of Wheelchair for Adult)

  • 주민;강영미
    • 대한물리치료과학회지
    • /
    • 제3권4호
    • /
    • pp.171-179
    • /
    • 1996
  • This study was conducted to investigate on the standardization of wheel chair for Korean in the twenties college students. Study population included 200 students in Andong junior college from September 25, 1996 to October 16, 1996. Basic measurements for wheel chair production were carried out A(from behind calf to rear of buttocks), B(from the popliteal fossa to the bottom of the heel), C(from the bottom of the elbow to the seating surface), D(from the seating surface from to midseapula), E(across the hip at widest point). The results are as follows. There was a statistical significance between male and female body dimension measurements in the A(p=0.0018), B(p=0.0001), E(p=0.0001), the other side not significance of C(p=0.1193), D(p=0.8467). The standard dimension of wheel chair included seat depth 40.6 cm, seat height 48.1 cm, arm height 25.8 cm, back height 35.7 cm, seat width 39.6 cm in the twenties male college students and in female case included seat depth 39.3 cm, seat height 45.2 cm, arm height 26.5 cm, back height 35.8 cm, seat width 41.2 cm.

  • PDF

Motor-Driven Power Steering 시스템의 진동 소음 스펙트럼 분석 (Analysis of Vibration Noise Spectrum in Motor-Driven Power Steering System)

  • 박한영;김진영;강준희
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.126-131
    • /
    • 2018
  • Unlike the hydraulic power steering (HPS) system, which operates by the high pressure of a fluid obtained from the engine power, the motor-driven power steering (MDPS) system uses an electric motor to steer the wheel without consuming engine power. To steer the wheel with an electric motor, a worm wheel and a worm gear rotating between the steering shaft and motor are required. Any imperfection during the construction of an MDPS system or in a composing part creates noise and vibration, which can be sensed by a driver. To solve the noise and vibration problems, each part must be designed to not resonate with other parts. In this work, we developed the measurement and analysis systems to obtain the noise and the vibration of an automobile MDPS system. A signal analyzer was equipped with a 96 kHz, 24-bit ADC and a 150 MHz digital signal processor. The predetermined threshold value of the vibration in the MDPS system was used to determine the pass/fail, and the results were displayed on the screen. Our system can be used in the fabrication line to swiftly determine any imperfections in the MDPS system construction.

탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘 (Flexible Loop Wheel Mechanism for Intestine Movement)

  • 임형준;민현진;김병규;김수현
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

무한궤도 로봇의 주행 해석에 관한 연구 (A Study on the Driving Analysis of Tracked Robot)

  • 이상호;고진석;정연하;신현수;김창준;이승열;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.867-872
    • /
    • 2007
  • A tracked robot has an excellent mobility on the rough terrain. Especially, a tracked robot for driving has to get structural function in the every field. In this paper, we propose a tracked robot of a small rear wheel typed. Also compared and estimated a driving analysis about the tracked robot in considered the general environment. Compared 2 models are different in size of rear wheels but front wheels are same size each other. From comparing model, the radius of front wheels is 100mm and the radius of rear wheels is 100mm. The radius of front wheels is 100mm and the radius of rear wheels is 70mm from proposed tracked robot. Depend on these radiuses of values we are known driving torque values of an actuating wheel using Recurdyn. And estimated stress of rotated track by an actuating wheel using Ansys. finally, the designed robot has size of $600mm\;{\times}\;330mm\;{\times}\;150mm$, weight is 27kg and the tracked robot is actuated by 2 geared DC motors.

  • PDF

차륜형 견마 로봇의 동역학 해석시간 단축을 위한 단순화 모델 (Simplified Model of Wheel Type Dog-Horse Robot to Reduce Dynamic Analysis Time)

  • 김영진;정사무엘;김태윤;유완석
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.157-165
    • /
    • 2016
  • 군용 전투 차량은 전시 상황에 여러 종류의 장애물들이 존재하는 험로를 주행해야 한다. 이런 환경에서는 전투 차량의 무거운 차체와 험로의 큰 장애물로 인해 큰 반력이 발생한다. 차륜형 견마 로봇에는 큰 장애물을 극복하기 위해서 회전형 현가장치가 적용되고, 미끄럼 조향 방식이 적용된다. 본 논문에서는 실시간 해석에 유리하도록 모델을 단순화시킨 방법을 제시하고, 기존 다물체 동역학 모델과 비교를 통해서 신뢰도 및 효율성을 확인하였다.

체간의 운동연쇄 형태에 따른 운동역학적 분석 (Biomechanical Analysis on Kinematic Chains Type of Trunk)

  • 한제희;우병훈
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.277-284
    • /
    • 2010
  • The purpose of this study was to investigate the trunk rotation type by wheel and axle. In order to analysis, 3D-motion analysis and electromyography were conducted on kinematic variables, impulse, average-EMG and integrated-EMG. Twelve healthy (age: $21.8{\pm}2.2$ yrs, height: $175.4{\pm}5.0cm$, weight: $66.7{\pm}6.4kg$) participated in the experiment. The results were as follows; in hand's velocity and acceleration, wheel and axial rotating movement using kinematic chain(type 3) were much faster. In impulse, type 3 was much stronger. In average-EMG, right and left, latissimus dorsi muscles was much stronger. In integrated-EMG, left erector spinae, right/left latissimus dorsi, and left external oblique muscles was much stronger. These results considered that, in the trunk rotation utilizing the kinematic chains action, latissimus dorsi muscles highly contribute to the muscle utilization that makes the rotating movement maximally effective.

등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어 (Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement)

  • 권영국;이장명
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

러그의 설계요인(設計要因)이 구동륜하(驅動輪下)의 토양반력(土壤反力)에 미치는 영향(影響) (Effects of Lug Design Factors of Driving Wheel on Soil Reaction)

  • 김진현;정성원;김창수;이기명
    • Journal of Biosystems Engineering
    • /
    • 제12권1호
    • /
    • pp.14-19
    • /
    • 1987
  • 본(本) 연구(硏究)는 구동륜(驅動輪)의 러그 설계요인(設計要因)중에 러그 테이퍼각(角), 러그각(角) 및 러그폭(幅)등이 토양반력(土壤反力)에 미치는 영향(影響)을 구명(究明)하기 위하여 모형실험장치(模型實驗裝置)를 제작(製作)하고 모래지반(地盤)의 토양조(土壤槽)를 이용(利用)하여 실험한 결과 다음과 같이 요약(要約)되었다. 1. 설정(設定)슬립이 증가(增加)할수록 토양반력(土壤反力)의 수평분력(水平分力)은 증가하였다. 2. 러그 테이퍼각(角)은 $23^{\circ}$까지 증가할수록 주행성향상(走行性向上)에 그 효과가 큰 것으로 나타났다. 3. 러그각(角)은 주행성향상(走行性向上)에 그 효과가 인정되며 $60{\sim}74^{\circ}$가 적절(適切)한 것으로 나타났다. 4. 러그폭(幅)은 20~30mm까지 토양반력(土壤反力)의 수평분력(水平分力)에는 큰 영향(影響)을 주지 못했다.

  • PDF

마이크로 엑츄에이터용 형상기억 리본 제조 및 제특성 평가 (The Fabrication and Evaluation of SMA Ribbons for Micro Actuator Application)

  • 이영수;장우양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.554-554
    • /
    • 2000
  • To improve mechanical properties of Cu-Al-Ni alloy by the grain refinement, Cu-Al-Ni SMA ribbons were fabricated by melt spinning apparatus. The variations of microstructure, mechanical properties and transformation characteristics with the condition of rapid solidification and annealing time-temperature were investigated in Cu-Al-Ni SMA ribbons. The ribbons fabricated by melt spinning obtained around 1.5nm in width and 50-60${\mu}{\textrm}{m}$ in thickness. With increasing wheel speed in order of 10m/s, 15m/s, 20m/s, 30m/s and 3m/s, the grain size was decreased in order of 10${\mu}{\textrm}{m}$, 6.25${\mu}{\textrm}{m}$, 5.5${\mu}{\textrm}{m}$, 3${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$. $M_{s}$ and $A_{s}$ temperature were decreased with decreasing grain size. By X-ray diffraction test, ordered $\beta$$_1$ phase was observed in all the SMA ribbons and the volume friction of it was increased with increasing wheel speed. With increasing wheel speed, strain was increased from 4.2% to 5.8% and fracture mode has changed from mixture of intergranular and dimple fracture to mixture of fiber structure and dimple fracture. The grain size of ribbon heat-treated at $600^{\circ}C$ was increased with increasing time. In the heat-treated ribbons at 55$0^{\circ}C$, ${\gamma}$$_2$ phases were observed.d.d.

  • PDF