• Title/Summary/Keyword: 2Wheel

Search Result 1,132, Processing Time 0.034 seconds

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Development of Novel Composite Powder Friction Modifier for Improving Wheel-rail Adhesion in High-speed Train (고속열차 점착계수 향상을 위한 신규 복합재료 분말 마찰조절재 개발 및 점착력 특성 평가)

  • Oh, Min Chul;Ahn, Byungmin
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.501-506
    • /
    • 2018
  • With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains' wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, $Al_2O_3$ ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at $150^{\circ}C$ to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.

A Study on the Wear Condition Diagnosis of Grinding Wheel in Micro Drill-bit Grinding System (마이크로 드릴비트 연마 시스템 연삭휠의 마모 진단 연구)

  • Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.77-85
    • /
    • 2022
  • In this study, to diagnose the grinding state of a micro drill bit, a sensor attachment location was selected through random vibration analysis of the grinding unit of the micro drill-bit grinding system. In addition, the vibration data generated during the drill bit grinding were collected from the grinding unit for the grinding wheels under the steady and worn conditions, and data feature extraction and dimension reduction were performed. The wear of the micro-drill-bit grinding wheel was diagnosed by applying KNN, a machine-learning algorithm. The classification model showed excellent performance, with an accuracy of 99.2%. The precision, recall and f1-score were higher than 99% in both the steady and wear conditions.

Development of Grogged Clay Used Water-purified-sludge (정수슬러지를 사용한 조합토의 개발)

  • Jeong, Jae-Jin;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • People could not imagine living without tab water. However, the water filtering process at a purification plant used to produce tab water creates tons of sludge, which is generally wasted. This sludge waste consists of (1) mineral elements, such as sand, (2) organic materials, and (3) a coagulant, which agglomerates the two. As an enormous amount of sludge waste is generated every year, numerous studies have been carried out to identify how to deal with this problem. Currently, however, most of the sludge waste is directly discarded in landfills. In the present study, water-purified sludge waste received a heat treatment at $1300^{\circ}C$ and was then ground into particles to be used as a ceramic material. Next, the resultant particles were compounded with chamotte substitutes to produce grogged clay that is suitable for wheel-throwing ceramics. Consequently, the plasticity of the sludge waste decreased as the content of calcination increased. Thus, it is considered that wheel throwing is available only up to PBF-3. Thus, it is available for wheel throwing and has a high strength of 864 $kgf/cm^2$ with less than 0.2 percent of porosity and absorption ratio were displayed in PBF-2 at $1280^{\circ}C$ with 20 percent of calcination from the purified sludge. Therefore, the PBF-2 body produced in this study was considered to be capable of replacing grogged clay in the market.

A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1))

  • Park, Hoo-Myung;Kang, Jin-Kab;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation (구형압입을 이용한 레이저 용접된 절단 휠의 잔류응력 분포 측정)

  • Lee, Yun-Hee;Lee, Wan-Kyu;Jeong, In-Hyeon;Nahm, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

Determination of the Optimal Control-Response Ratio for Data Searching Through a Touchpad Placed on the Steering Wheel (스티어링 휠의 터치패드를 이용한 정보 목록 검색 시 조작 : 반응 비율에 관한 연구)

  • Kim, Jong-Seok;Jung, Eui-S.;Park, Sung-Joon;Jeong, Seong-Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • As the number of personal computers installed in vehicles increases, a touchpad often used in a labtop computer can be used for the control of an in-vehicle information system (IVIS). Using a touchpad to control the system allows the user to select among large amount of information with a single touch of dragging. For safety and convenience of a driver, the touchpad could be placed on a steering wheel. This research is designed to calculate the most efficient Control-Response Ratio (C/R ratio) for the menu interaction of a touchpad on a steering wheel. Since the menu pointer's rate of movement and proper C/R ratio is determined by the amount of selected information, the amount of displayed information and the movement of a menu pointer was chosen to be independent variables. The dependent variables are a user's preference and task completion time. Two factor full factorial within subject design was used 16 subjects. The investigation revealed that the amount of selected information increased with increasing C/R ratio. The movement of the pointer became slower as the amount of information increased. The best C/R ratio was calculated for each amount of information and preference regression of the user's preference was drawn accordingly. Through this research, the automobile interior designer can benefit from the guidelines suggested for the touchpad control.

Optimal Feature Parameters Extraction for Speech Recognition of Ship's Wheel Orders (조타명령의 음성인식을 위한 최적 특징파라미터 검출에 관한 연구)

  • Moon, Serng-Bae;Chae, Yang-Bum;Jun, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.161-167
    • /
    • 2007
  • The goal of this paper is to develop the speech recognition system which can control the ship's auto pilot. The feature parameters predicting the speaker's intention was extracted from the sample wheel orders written in SMCP(IMO Standard Marine Communication Phrases). And we designed the post-recognition procedure based on the parameters which could make a final decision from the list of candidate words. To evaluate the effectiveness of these parameters and the procedure, the basic experiment was conducted with total 525 wheel orders. From the experimental results, the proposed pattern recognition procedure has enhanced about 42.3% over the pre-recognition procedure.

  • PDF

Investigation on Watertight Properties of the Latex Concrete for Protection Layers of the Slab on Vibrating Strucutres (진동구조물 슬래브 보호층으로서 라텍스 콘크리트의 수밀특성 분석)

  • Lee, Sun-Gyu;Lee, Jung-Hoon;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.247-252
    • /
    • 2009
  • The LMC method of construction which have application to the road bridge is being considered the least relative importance about the watertight performance, because it focused on the durability of concrete. However, The LMC which is being expanded scope of application to the method of construction has grown importance about the watertight performance on the usability and maintenance side as well as durability. In this study, The latex concrete of two types which are different from mingled-ratio of the latex made a comparison to the compressive strength, watertight performance, dynamic wheel load resistance performance and confirmed what it has resistibility about chemical action through the chemical resistance test. The initial strength and watertight performance showed that were tendency the downward at 14 days. However, The long-term strength after 28 days showed that it has firm performance. In consequence, The initial curing of latex concrete is required to scrupulous care and attention at the site application. As a chemical resistance test result, The specimen that is steeped in sulphuric acid solution of 2% discovered the delamination phenomenon. However, it was confirmed that delamination phenomenon don't have an effect on the compressive strength. Moreover, As a dynamic wheel load resistance test result, The latex concrete was concluded to confirming the durability and running stability, because it had hardly any thickness reduction of latex concrete surface about dynamic wheel load and rarely found crack and delamination.

  • PDF

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.