• Title/Summary/Keyword: 2D-QSAR model

Search Result 86, Processing Time 0.025 seconds

3D-QSAR Analyses on the Inhibition Activity of 4-Hydroxybenzyl alcohol Analogues Against Tyrosinase (4-Hydroxybenzyl alcohol 유도체들의 Tyrosinase 활성 저해에 대한 3D-QSAR 분석)

  • Kim, Sang Jin;Sung, Nack Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) models between the substituents with changing groups ($R_1$ & $R_2$) of 4-hydroxybenzyl alcohol (4-HBA) derivatives as substrate molecule and their inhibitory activities against tyrosinase were derived and discussed quantitatively. The optimized CoMSIA FF model showed the best predictability and fitness ($r^2$ = 0.858 & $q^2$ = 0.951). The contour maps of the optimized CoMSIA FF model showed that, the inhibitory activities of the analogues against tyrosinase were expected to increase when hydrophobic (Hy) favor, negative charge (E) favor, steric (S) disfavor and hydrogen bond donor (HD) disfavor groups were substituted at the $R_2$ position. When the hydrogen bond donor (HD) favor groups were substituted at the $R_1$ position, it is predicted that the substituents will be able to increase the inhibitory activity.

Prediction of $EC_{50}$ of Photobacterium phosphoreum for CAHs and Chlorophenol Derivatives Using QSAR (QSAR방법을 이용한 CAHs와 Chlorophenol 유도체에 대한 $EC_{50}$값 예측)

  • Lee, Hong-Joo;Yoo, Seung-O;Lee, Jeong-Gun;Kim, Byung-Yong;Chun, Uck-Han
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • Measurement of inhibition of bioluminescence in Photobacterium phosphoreum has been porposed as a sensitive and rapid procedure to monitor toxic substances. However, at first, $EC_{50}$ which shows degree of toxicity to each toxic substances must be calculated. QSAR (Quantitative Structure Activity Relationship) model can be used to estimate $EC_{50}$ to save time and endeavor. Moderately high correlation coefficients ($r^2{\geq}$ 0.97) were calculated from the linear correlation between $EC_{50}$ and molecular connectivity indices of CAHs (chlorinated aliphatic hydrocarbons)such as $^0X$, $^0X^V$, $^1X$, $^2X$ and $^3X^v_c$ and quadratic correlation between $EC_{50}$ and $^0X$, $^0X^V$, $^2X^V$, $^3X_c$, $^3X^V_c$ and P. It shows that the molecular connection indices in carbon structure is contributed to biological characters with linear relation and that in the other one with quadratic relation. The $EC_{50}$ of chlorophenol derivatives had quadratic relation with the value of octanol/water prtition coefficients ($r^2$=0.99) and linear and quadratic relation with the number of chlorine compound (($r^2{\geq}$0.94). This confirms the already known trend of increasing toxicity with increasing ability of a compound to diffuse through cell membrane and number of chlorine substitution.

  • PDF

3D-QSAR Analyses on the Inhibition Activity of 4-($R_1$)-Benzyl Alcohol and 4-($R_2$)-Phenol Analogues Against Tyrosinase (4-($R_1$)-Benzyl alcohol 및 4-($R_2$)-Phenol 유도체들의 Tyrosinase 활성 저해에 대한 3D-QSAR 분석)

  • Kim, Sang-Jin;Lee, Myoung-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.271-276
    • /
    • 2009
  • The 3-dimensional quantitative structure-activity relationships (3D-QSARs) models between the substituents with changing groups ($R_1$ & $R_2$) of 4-($R_1$)-benzyl alcohol and 4-($R_2$)-phenol derivatives as substrate molecule and their inhibitory activities against tyrosinase were derived and discussed quantitatively. The optimized CoMSIA 2 model have best predictability and fitness ($r^2\;=\;0.858$ & $q^2\;=\;0.951$). The contour maps of optimized CoMSIA 2 model showed that, the inhibitory activities of the analogues against tyrosinase were expected to increase when hydrophobic favor, negative charge favor, steric disfavor and hydrogen bond donor disfavor groups were substituted at the $R^2$ position. When the positive charge and the hydrogen bond donor favor groups were substituted at the $R_1$ position, it is predicted that the substituents will be able to increase the inhibitory activity. However, hydrogen bond acceptor did not affect inhibitory activities of tyrosinase.

3D-QSAR Analysis on the Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Analogues against Gray Mold (Botrytis cinerea) (잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 3D-QSAR 분석)

  • Sung, Nack-Do;Park, Kee-Han;Jang, Seok-Chan;Soung, Min-Kyu
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity of N-phenyl-O-phenylthionocarbamate analogues against resistant and sensitive gray mold (Botrytis cinerea) (RBC & SBC) were studied quantitatively using CoMFA and CoMSIA methods. The correlation coefficient and predict- ability of optimized CoMFA model with the atom based fit alignment were better ($r^2$ & $q^2=CoMFA{\gg}CoMSIA$) than that of CoMSIA model. And statistical values of the models on the fungicidal activity against SBC were showed higher ($r^2=SBC{\gg}RBC$) than that of RBC. In CoMFA models, steric field on the activity was more influenced than electrostatic field. And in case of CoMSIA models, the influence of CoMSIA field on the activity against RBC and SBC was differ from each other but the influence of H-bond donor field was same to the two fungi. It is revealed that the selectivity factor with CoMFA model on the fungicidal activity between the two fungi was caused on the difference of steric field. Therefore, it is predicted that the large steric field with meta- and para-substituents on the N-phenyl ring will be improved to the fungicidal activity with SBC.

CoMFA and CoMSIA Study on Angiotensin-Converting Enzyme (ACE) Inhibitors: a Molecular Design of Potential Hypertensive Drugs

  • San Juan, Amor A.;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.249-255
    • /
    • 2005
  • Angiotensin-converting enzyme (ACE) is primarily responsible for human hypertension. Current ACE drugs show serious cough and angiodema health problems due to the un-specific activity of the drug to ACE protein. The availability of ACE crystal structure (1UZF) provided the plausible biological orientation of inhibitors to ACE active site (C-domain). Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecula. field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of 28 ACE inhibitors. Alignment for CoMFA obtained by docking ligands to 1UZF protein using FlexX program showed better statistical model as compared to superposition of corresponding atoms. The statistical parameters indicate reasonable models for both CoMFA (q$^2$ = 0.530, r$^2$ = 0.998) and CoMSIA (q$^2$= 0.518, r$^2$ = 0.990). The 3D-QSAR analyses provide valuable information for the design of ACE inhibitors with potent activity towards C-domain of ACE. The group substitutions involving the phenyl ring and carbon chain at the propionyl and sulfonyl moieties of captopril are essential for specific activity to ACE.

  • PDF

CoMSIA Analysis on The Inhibition Activity of PTP-1B with 3${\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues (3${\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B저해활성에 대한 CoMSIA분석)

  • Kim, Sang-Jin;Chung, Young-Ho;Kim, Se-Gon;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The comparative molecular similarity indices analysis (CoMSIA) models between 3${\beta}$-Hydroxy-12-oleanen-28-oic acid (1-30) analogues as substrate molecule and their inhibitory activities ($pI_{50}$) against protein tyrosine phosphatase (PTP)-1B were derived and discussed quantitatively. Listing in order, the CoMFA>CoMSIA${\geq}$HQSAR>2D-QSAR model, these QSAR models had the better statistical values. The optimized CoMSIA F1 model at grid 3.0${\AA}$ had the best predictability and fitness ($q^2$=0.754 and $r^2$=0.976) by field fit alignment. The order of contribution ratio (%) of CoMSIA fields concerning the inhibitory activities was a H-bond acceptor (48.9%), steric field (25.8%) and hydrophobic field (25.4%), respectively. Therefore, the inhibitory activities of substrate molecules against PTP-1B were dependent upon H-bond acceptor field (A) of $R_4$-group. From the analytical results of CoMSIA contour maps, oleanolic acid derivatives will have better inhibition activities if $R_1$ group has H-bond acceptor disfavor, $R_3$group has steric disfavor and $R_4$ group has steric, hydrophobic, H-bond favor.

Three-Dimensional Quantitative Structure Activity Relationship Studies on the Flavone Cytotoxicity and Binding to Tubulin

  • Kim, Ja-Hong;Sohn, Sung-Ho;Hong, Sun-Wan
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.119-121
    • /
    • 2001
  • Three-Dimensional Quantitative Structure-Activity Relationship(QSAR) has been investigated over 67 flavonoids to correlate and predict GI$\sub$50/ values. The partial least-squares(PLS) model was performed to calculate the activity of each derivatives, and this was compared with the actual value. The results of the cross-validated(${\gamma}$$^2$=0.997) values show that cytotoxic activities play an important role which is in good agreement with the observed GI$\sub$50/ values.

  • PDF

3D-QSAR Study on the Influence of Alrylamino (R) Substituents on Herbicidal Activity of Thiourea Analogues

  • Soung, Min-Gyu;Park, Kwan-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1469-1473
    • /
    • 2010
  • Influences of alrylamino (R) substituents on the herbicidal activity ($pI_{50}$) of 1-(4-chloro-2-fluoro-5-propargyloxypheny)-3-(R)-thiourea analogues (1 ~ 35) against the barnyard grass (Echinochloa crusgalli) in the pre-emergence step were discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as the three dimensional quantitative structure-activity relationship (3D-QSAR) method. The statistically most satisfactory CoMFA models for the herbicidal activity against the barnyard grass had the better predictability ($r^2{_{cv.}}$) and correlativity ($r^2{_{ncv.}}$) than those of CoMSIA models. The optimized CoMFA model 1($r^2{_{cv.}}$ = 0.531 & $r^2{_{ncv.}}$ = 0.931) with the sensitivity to the perturbation (${d_q}^{2'}{dr^2}_{yy'}$ = 1.081) and the prediction ($q^2$ = 0.475) produced by a progressive scrambling analyses were not dependent on chance correlation. And statistical qualities with the atom based fit alignment (AF) were slightly higher than those of the field fit alignment (FF). According to the optimized CoMFA model 1, the contribution ratio (%) of the steric field (76.9%) on the herbicidal activity of the Thioureas was three-fold higher than that of the electrostatic field (20.1%) and the hydrophobic field (3.0%) had the least influence. A steric favor group is on the vicinity of the nitrogen atom in alrylamino (R) substituent, and a steric disfavor group is on the outer side of alrylamino (R) substituent. Thus, as the size of alrylamino (R) substituent increases, so does the herbicidal activity of the substituent.

Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules

  • Soung, Min-Gyu;Kim, Jong-Han;Kwon, Byoung-Mog;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1355-1360
    • /
    • 2010
  • In order to search new inhibitors against farnesyl protein transferase (FPTase), a series of 2,3-bis-benzylidenesuccinaldehyde derivatives (1-29) were synthesized and their inhibition activities ($pI_{50}$) against FPTase were measured. From based on the reported results that the inhibitory activities of dimers 2,3-bis-benzylidenesuccinaldehydes were higher than those of monomers cinnamaldehydes, 3D-QSARs on FPTase inhibitory activities of the dimers (1-29) were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The statistical qualities of the optimized CoMFA model II ($r^2{_{cv.}}$= 0.693 and $r^2{_{ncv.}}$= 0.974) was higher than those of the CoMSIA model II ($r^2{_{cv.}}$ = 0.484 and $r^2{_{ncv.}}$ = 0.928). The dependence of CoMFA models on chance correlations was evaluated with progressive scrambling analyses. And the inhibitory activity exhibited a strong correlation with steric factors of the substrate molecules. Therefore, from the results of graphical analyses on the contour maps and of predicted higher inhibitory active compounds, it is suggested that the structural distinctions and descriptors that contribute to inhibitory activities ($pI_{50}$) against FPTase will be able to applied new inhibitor design.

A CoMFA Study of Phenoxypyridine-Based JNK3 Inhibitors Using Various Partial Charge Schemes

  • Balasubramanian, Pavithra K.;Balupuri, Anand;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • The (c-Jun N-terminal kinase 3) JNK3 is a potential therapeutic target for various neurological disorders. Here, a three dimensional quantitative structure-activity relationship (3D-QSAR) study on phenoxypyridine as JNK3 inhibitors was performed to rationalize the structural requirements responsible for the inhibitory activity of these compounds. The comparative molecular field analysis (CoMFA) using different partial atomic charges, was employed to understand the structural factors affecting JNK3 inhibitory potency. The Gasteiger-Marsili yielded a CoMFA model with cross-validated correlation coefficient ($q^2$) of 0.54 and non-cross-validated correlation coefficient ($r^2$) of 0.93 with five components. Furthermore, contour maps suggested that bulky substitution with oxygen atom in $R^3$ position could enhance the activity considerably. The work suggests that further chemical modifications of the compounds could lead to enhanced activity and could assist in the design of novel JNK3 inhibitors.