• 제목/요약/키워드: 2D integral theory

검색결과 45건 처리시간 0.023초

PSCAD/EMTDC를 이용한 태양광발전(PV) 모델링에 관한 연구 (The PV System Modeling Based on the PSCAD/EMTDC)

  • 전진택;노대석;김찬혁;왕용필
    • 한국융합학회논문지
    • /
    • 제2권3호
    • /
    • pp.15-23
    • /
    • 2011
  • 본 논문에서는 태양광발전의 3상 인버터의 동작특성을 해석하기 위하여, d-q좌표변환을 통하여 상태방정식을 유도하고, 출력제어를 위한 PI제어기를 갖은 전류제어 알고리즘과 인버터 설계에 대한 Sinusoidal PWM방식의 이론적 알고리즘 제시하였다. 이를 바탕으로 배전계통의 상용소프트웨어인 PSCAD/EMTDC를 이용하여 태양광발전의 모델링을 수행하였다. 그리고 시뮬레이션 결과와 이론적인 수치해석과의 비교, 분석을 통하여 본 연구에서 제시한 모델링의 유효성을 확인하였다.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

GIS를 이용한 건물등록 방법 선정에 관한 연구 (A Study on the Selection of Building Registration Method using GIS)

  • 양인태;오이균;유영걸;천기선
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2004년도 GIS/RS 공동 춘계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2004
  • Recently, in a field of cadastre, a computerization of cadastral map is in progress with great growth of GSIS field. Also, the needs for the integration of land and building information are widely increasing for integral-management and its application of various land related information. Through a revision of cadastral laws to replace the existing 2D-Cadastre with the 3D-Cadastre, a legal basis to register the position of buildings and facilities is prepared in the governmental or civil fields. This paper presented 3D-Cadastre theory that has been studied on Europe and surveyed building position directly with Totalstation at cadastral control point after choosing pilot test area, Also, the most efficient surveying method of registering building in a cadastral map is presented with comparing and analyzing building position after surveying digital orthophoto and digital map.

  • PDF

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

PID 제어기의 On-Line 퍼지 자동동조 (On-Line Fuzzy Auto Tuning for PID Controller)

  • 황형수;최정내;이원혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.55-61
    • /
    • 2000
  • In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kc, $\tau$I, $\tau$D by the Ziegler-Nichols formula using the ultimate gain and ultimate period from a relay tuning experiment. We get error and error change of plant output correspond to the initial value and new proportion gain(Kc) and integral time($\tau$I) from fuzzy tunner. This fuzzy tuning algorithm for PID controller considerably reduced overshoot and rise time compare to any other PID controller tuning algorithms. In real parametric uncertainty systems, the PID controller with Fuzzy auto-tuning give appreciable improvement in the performance. The significant properties of this algorithm is shown by simulation In this paper, we proposed a new PID algorithm by the fuzzy set theory to improve the performance of the PID controller.

  • PDF

사석방파제에 의한 파랑변형에 관한 연구 (Wave Transformation of a Rubble-Mound Breakwater)

  • 강인식;곽기석;김도삼;양윤모
    • 한국항만학회지
    • /
    • 제8권2호
    • /
    • pp.57-65
    • /
    • 1994
  • A theoretical formulation is performed to investigate the wave reflection and transmission ratios by a submerged multi-layered rubble-mound breakwater. This theory, which is based on the linear boundary integral method, can be extended to the multi-layered breakwater with arbitrary cross section. In the theoretical analysis evanescent mode wave is not considered, since fictitious open boundaries are put on the places far from the structure. Therefore the mathematical presentation may be simpler, and computational time shorter. The validity of obtained numerical results is demonstrated by comparing with ones of impermeable and permeable breakwaters. Comparison shows resonable agreement. On the basis of these verifications this theory is applied to the one and two-layered submerged rubble-mound breakwater with trapezoidal type.

  • PDF

Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer

  • Intarit, P.;Senjuntichai, T.;Rungamornrat, J.;Rajapakse, R.K.N.D.
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.85-105
    • /
    • 2011
  • The influence of surface elasticity and surface residual stress on the elastic field of an isotropic nanoscale elastic layer of finite thickness bonded to a rigid material base is considered by employing the Gurtin-Murdoch continuum theory of elastic material surfaces. The fundamental solutions corresponding to buried vertical and horizontal line loads are obtained by using Fourier integral transform techniques. Selected numerical results are presented for the cases of a finite elastic layer and a semi-infinite elastic medium to portray the influence of surface elasticity and residual surface stress on the bulk stress field. It is found that the bulk stress field depends significantly on both surface elastic constants and residual surface stress. The consideration of out-of-plane terms of the surface stress yields significantly different solutions compared to previous studies. The solutions presented in this study can be used to examine a variety of practical problems involving nanoscale/soft material systems and to develop boundary integral equations methods for such systems.