2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific orientation and frequency. To obtain the 2-D complex Gabor filter bank output, existing methods are repeatedly applied with respect to multiple orientations and frequencies. In this paper, we propose a novel approach that efficiently computes the 2-D complex Gabor filter bank by reducing the computational redundancy that arises when performing the Gabor filtering at multiple orientations and frequencies. The proposed method first decomposes the Gabor basis kernels to allow a fast convolution with the Gaussian kernel in a separable manner. This enables reducing the runtime of the 2-D complex Gabor filter bank by reusing intermediate results of the 2-D complex Gabor filtering computed at a specific orientation. Experimental results demonstrate that our method runs faster than state-of-the-arts methods for fast 2-D complex Gabor filtering, while maintaining similar filtering quality.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.552-569
/
2017
The existing steganalysis method based on 2D Gabor filters can achieve a competitive detection performance for content-adaptive JPEG steganography. However, the feature dimensionality is still high and the time-consuming of feature extraction is relatively large because the optimal selection is not performed for 2D Gabor filters. To solve this problem, a new steganalysis method is proposed for content-adaptive JPEG steganography by selecting the optimal 2D Gabor filters. For the proposed method, the 2D Gabor filters with different parameter settings are generated first. Then, the feature is extracted by each 2D Gabor filter and the corresponding detection accuracy is used as the measure for filter selection. Next, some 2D Gabor filters are selected by a greedy strategy and the steganalysis feature is extracted by the selected filters. Last, the ensemble classifier is used to assemble the proposed steganalysis feature as well as the final steganalyzer. The experimental results show that the steganalysis feature extracted by the selected optimal 2D Gabor filters also can achieve a competitive detection performance while the feature dimensionality is reduced greatly.
Separable Gabor 필터는 기존의 2D Gabor 필터를 x축 성분과 y축 성분만을 지니는 두 개의 1D 필터로 나누어 각각 적용하는 방법으로 속도 향상을 가져왔으며, 지문인식 등에서 사용되어왔다. 하지만 정맥과 같은 경우에는 지문의 융선들 보다 더 굵기 때문에 필터의 크기 또한 매우 커진다. 따라서 Separable Gabor 필터의 경우도 지문에서만큼의 빠른 속도를 내지는 못한다. 본 논문에서는 Separable Gabor 필터 보다 더욱 고속의 연산이 가능한 Separable Symmetric Gabor 필터를 제안하였다. 이 필터는 사선 방향으로의 특징을 강조함에 있어 동시에 대칭이 되는 각도의 특성까지 강조하고, 회선 과정에서 필터의 방향 값을 고려하지 않기 때문에 인덱스 계산이 매우 단순해져 기존의 Separable Gabor 필터보다 처리 속도를 향상시킬 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2113-2128
/
2019
Image thresholding techniques introducing spatial information are widely used image segmentation. Some methods are used to calculate the optimal threshold by building a specific histogram with different parameters, such as gray value of pixel, average gray value and gradient-magnitude, etc. However, these methods still have some limitations. In this paper, an entropic thresholding method based on Gabor histogram (a new 2D histogram constructed by using Gabor filter) is applied to image segmentation, which can distinguish foreground/background, edge and noise of image effectively. Comparing with some methods, including 2D-KSW, GLSC-KSW, 2D-D-KSW and GLGM-KSW, the proposed method, tested on 10 realistic images for segmentation, presents a higher effectiveness and robustness.
Based on two real and invertible $d{\times}d$ matrices Band C such that the norm $||C^T\;B||$ is sufficiently small, we provide a construction of tight Gabor frames $\{E_{Bm}T_{Cn}g\}_{m,n{\in}{\mathbb{Z}^d}$ with explicitly given and compactly supported generators. The generators can be chosen with arbitrary polynomial decay in the frequency domain.
본 논문에서는 사람의 생태학적, 행동학적 특성을 이용하여 개인을 인식하는 생체인식 기법의 하나인 홍채인식을 다루었다. 사람의 홍채는 태어날 때 한번 정해지면 평생 변화하지 않는 특성을 가지고 있으며, 개개인별로 모양이 모두 다른 것으로 알려져 있다. 이에, 본 논문에서는 홍채영상 취득시 조명에 의한 동공의 크기 변화에 민감하지 않은 2차원의 홍채패턴을 취득하고, 2D Gabor 필터와 48개의 분할된 섹터로부터 특징 값을 추출한다. 인식과정에서는 correlation 계수를 이용하여 서로 다른 홍채의 특징 값에 대해 유사도를 측정하고 가장 큰 값을 갖는 대상을 찾게 되는데, 이때, 3개의 필터를 거쳐 얻어진 영상에 대해 최고의 값을 인식 대상자로 인정하므로 오인식 될 확률을 최소화 할 수 있다. 제안한 알고리듬의 유용성을 확인하기 위해 대상자 10명에 대해 5회씩 촬영한 데이터베이스에 대해 실험한 결과 90% 이상의 높은 인식률을 얻었다.
본 논문은 FCM 군집화 알고리즘을 사용하여 표정영상에서 특징점들을 추출한 후 추출된 특징점으로부터 Gabor 웨이브렛들을 이용하여 표정영상의 국소영역을 복원한다. 얼굴의 특징점 추출은 두단계로 이루어진다. 1단계는 이차원 Gabor 웨이브렛 계수 히스토그램의 평균값을 적용하여 얼굴의 주요 요소성분들의 경계선을 추출한 후, 2단계에서는 추출된 경계선 정보로부터 FCM 군집화 알고리즘을 사용하여 얼굴의 주요 요소성분들의 최종적인 특징점들을 추출한다. 본 연구에서는 FCM 군집화 알고리즘을 이용하여 추출된 적은 수의 특징점들 만으로도 표정영상의 주요 요소들을 복원할 수 있음을 제시한다. 이것은 인간의 얼굴 표정인식 뿐만아니라 물체인식에도 적용되어질 수 있다.
본 논문은 생체측정학(Biometrics)중 홍채의 패턴을 이용하는 것으로, 사람의 홍채는 태어날 때 한번 정해지면 평생 변화하지 않으며, 개개인별로 모양이 모두 다른 것으로 알려져 있다. 이에, 본 논문에서는 홍채영상 취득시 조명에 의한 동공의 크기 변화에 민감하지 않은 2차원의 홍채패턴을 취득하고, 2D Gabor 필터와 48개의 분할된 섹터로부터 특징값을 추출한다. 또한, 인식과정에서는 correlation 계수를 이용하여 서로 다른 홍채의 특징값에 대해 유사도를 측정하고 가장 큰 값을 갖는 사람을 찾게 되는데, 이때, 3개의 필터를 거쳐 얻어진 영상에 대해 최고의 값을 인식 대상자로 인정하므로 오인식 될 확률을 최소화 할 수 있다. 제안한 알고리듬의 유용성을 확인하기 위해 남성과 여성 대상자 10명의 왼쪽 눈에 대해 5회 촬영하여 데이터베이스 구축 후, 실험한 결과 90%이상의 높은 인식률을 얻음으로 제안한 알고리듬의 유용성을 확인할 수 있다.
Journal of information and communication convergence engineering
/
제9권2호
/
pp.207-211
/
2011
This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.
한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
/
pp.126-132
/
2000
This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.