• Title/Summary/Keyword: 2D clothing pattern

Search Result 178, Processing Time 0.019 seconds

Basic Pattern Development of Haptic Gloves from 3D Data (3차원 데이터를 활용한 장갑형 햅틱(Haptic)용 기본 패턴 개발)

  • Kim, So-Young;Lee, Ye-Jin;Park, Hye-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.8
    • /
    • pp.1226-1232
    • /
    • 2008
  • Tight fitting glove pattern is necessary to convey oscillation to the skin from the sensors attached on the hands as found in the haptic device. However, it has been difficult to provide customized glove pattern for haptic device so far. The objective of the paper is to develop a 2D pattern that fit tightly to hands by adopting the recent 3D technology to the clothing science. In this study, the user graphic interface application software(2C-AN) for the semi-automatic garment pattern generation has been utilized to develop the methodology of construct tight-fitting glove pattern for the hand in natural position. A basic pattern was developed directly from the 3D images of hand and the verification of the proposed pattern was also provided.

Improvement of ECG Measurement for the Elderly's U-healthcare Clothing Using 3D Tight-fit Pattern (3D패턴을 이용한 노인용 u-헬스케어 의복의 심전도 측정 연구)

  • Park, Hye-Jun;Shin, Seung-Chul;Shon, Boo-Hyun;Hong, Kyung-Hi
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.676-682
    • /
    • 2008
  • In this study a guideline of the 3D-fit pattern for the ECG(electrocardiogram) measurement of elderly's u-healthcare clothes was proposed. In the screening test of the ECG measurement band, ECG peak band was observable at the band pressure of 0.20 kPa. By employing a 3D body image, tight-fit 3D patterns were made at two different reduction rates of 21%(pattern 1) and 33%(pattern 2), and corresponding pressure of both of the clothes were 0.25 kPa and 0.54 kPa, respectively. Typical waves of ECG were found in both stationary and moving position. In terms of the subjective evaluation of the u-healthcare clothes when worn, it was confirmed that reduction pattern 1(0.25 kPa) conveyed comfortable clothing pressure and pleasantness, which is very close to the result of screening test of ECG band experiment. As results, it is recommended that reduction rate should be adjusted, so that clothing pressure is about 0.2 kPa for the elderly's comfortable and efficient u-healthcare clothes.

2D Pattern Development of Body Surface from 3D Human Scan Data Using Standing and Cycling Postures (3D 스캔을 이용한 사이클 동작 전후 체표 변화 고찰 및 2D 전개 패턴의 비교)

  • Jeong, Yeonhee;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.21 no.5
    • /
    • pp.975-988
    • /
    • 2012
  • Although the pattern development for tight-fitting clothing has been carried out using 3D data on humans, the pattern development using 3D scan data obtained for various postures still remains an interesting subject. In this study, we have developed the 2D pattern using the 3D human body reflecting standing and cycling postures. The 3D scan data of a subject was obtained using Cyberware. 2C-AN program(Triangle simplification and the Runge-Kutta method) was used in the system to reduce the 3D scan data points and to make segmented triangular patches in a plane from 3D data. As results, surface distance and area of each body part of standing and cycling postures were also provided for the future application of the functional clothing construction. The area of center piece on the front (c.front) decreased by $106.45cm^2$(-13.08%) and that of lateral piece(s.back) on the back increased by $144.96cm^2$(18.69%) in the patterns of cycling posture. The girth of neck and waist for the cycling posture increased by 0.88cm (3.92%) and 1.56cm(4.40%) respectively, and the that of thigh decreased by 1.01cm(-2.24%). The differences between the area in the 2D pattern obtained from the 3D scan data and that in the 3D scan surface data for standing and cycling postures were very small($-10.34cm^2$(-0.32%) and $-44.33cm^2$(-1.32%)).

Analysis of Changes to a 2D Bodice Sloper According to Shoulder Line Variables of a 3D Mannequin and Their Relationships (3D 인대의 어깨선 변인에 따른 2D 길원형의 변화 및 상호관계 분석)

  • Eunsun Kwon;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.563-575
    • /
    • 2024
  • This study analyzed 2D bodice sloper changes according to combinations of the lateral neck and shoulder points of a 3D mannequin's shoulder lines. The relationship between the 3D shape and 2D pattern was analyzed. The shoulder line was set to a default of 1cm in front of or behind the lateral neck point, 1cm in front or behind the lateral shoulder point and 1cm vertically above the lateral neck or shoulder point. When the lateral neck point was moved backward, the front neck depth, front and back shoulder height, and shoulder length in the 3D shape increased, whereas the back neck's depth and width decreased. In the 2D pattern, the back shoulder height decreased. As the lateral shoulder point moved backward, all items of the 3D shape showed little change. However, the front shoulder height for the 2D pattern decreased. Consequently, the back shoulder height increased, and the lateral neck point was raised vertically by 1cm. Meanwhile, only the back neck depth and shoulder length decreased while all other items increased; however, in the 2D pattern, the front neck width and shoulder line showed no notable change. The shoulder point was raised vertically by 1cm, and the front and back shoulder heights of the 3D shape and 2D pattern were decreased.

2D Pattern Development of Tight-fitting Bodysuit from 3D Body Scan Data for Comfortable Pressure Sensation (인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2006
  • Adjusting pressure level in the construction of athletes' tight-fitting garments by reducing the elastic knit pattern is a challenging subject, which influences the performance of the wearer directly. Therefore, in this study, relationship between the reduction rates of the basic pattern obtained from 3D human scan data and resultant clothing pressure was explored to improve the fit and pressure exerted by clothing. 3D scan data were obtained using Cyberware and they were transformed into a flat pattern using software based on Runge-Kutta method. Reduction rate was examined by subjective wear test as well as objective pressure measurement. As a result, difference in the length between the original 3D body scan data and the 2D tight-fitting pattern was 0.02$\sim$0.50cm (0.05$\sim$1.06%), which was within the range of tolerable limits in making clothes. Among the five garments, the 3T-pattern was superior in terms of subjective sensation and fit. The pressure of the 3T pattern was 2$\sim$4 gf/cm2 at five locations on the body, which is almost the same or a bit higher than that of Z-pattern. In the case of tight-fitting overall garment, the reduction rate of the pattern in the wale direction is more critical to the subjective sensation than the course direction. It is recommended that the reduction grading rules of course direction should be larger than that of Ziegert for a better fit of tight-fitting garments. In the case of wale direction, however, reduction grading rule should be kept the same as suggested earlier by Ziegert (1988).

  • PDF

Pattern Development using the Curvature Plot of 3D Human Scan Data (3차원 인체의 곡률분포를 이용한 패턴 전개)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1478-1486
    • /
    • 2008
  • The human body composed of concave and convex curvatures, and the current 3D scanning technology which involves inherent measurement errors make it difficult to extract distinct curvature plot directly. In this study, a method of extracting the clear curvature plot and its application to the cycling pants design were proposed. We have developed the ergonomic pattern from the 3D human body reflecting cycling posture. For the ergonomic design line on the 3D human body, the 3D information on the lower part of four male bodies with flexed posture was analyzed. The 3D scan data of four subjects were obtained using Cyberware. As results, the iteration of the tessellated shell was executed 100 times to obtain optimized curvature plots of the muscles on the body surface, and the boundaries of the curvature plots were applied to the design lines. Maximum(Max-pattern) and mean curvature plots(Mean-pattern) were adopted in the design line of the cycling pants, and performance of those lines was compared with that of conventional princess line(Con-pattern). The average error of total area and length in the 2D pattern developed from the 3D flexed body surface in this study were very minimal($4.58cm^2$(0.19%) and 0.15mm(0.46%)), which was within the range of tolerable limits in clothing production. The pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the cycling skin, so that the extra ease for movement and good fit was not need to be considered.

Design of Brassiere Pattern for Big Size Breast Women -Based on 3D Breast Scanning Data- (유방이 큰 여성을 위한 브래지어 패턴 설계 -3차원 유방 형상 자료를 중심으로-)

  • Han, Chohee;Yi, Kyong-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.204-214
    • /
    • 2019
  • A CAD program has recently been introduced that can be directly developed into a three-dimensional human body shape and made into a pattern. It is possible to fabricate a bra that reflects the volume and surface area of the breast; however, it still needs to be verified. This study investigates the average size and shape of 20 big-breasted women and designs a brassiere pattern for women with large breasts using a 3D Flattening function of OptiTex PDS v15.6. In addition, the study verifies the reliability of the proposed method compared to a conventional brassiere pattern. The study results are as follows. First, the three dimensional measurement values were smaller than the direct measurement dimensions when the three dimension measurement dimensions of the subjects were compared with the direct measurement dimensions, the replica measurement dimensions and the three dimensional measurement dimensions. Second, the 3D flattening pattern reflects the actual shape, length, and area of the actual breast when comparing a brassiere pattern using a 3D shape and pattern reflecting the direct measurement.

Pattern Development of Waist / Abdominal Area of Obese Womem Using 3D Geometrical Model (3D모델을 이용한 비만체형 여성의 허리-배 부위 패턴 특성 연구)

  • Kim, So-Young;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1018-1026
    • /
    • 2005
  • Recent development of 3D scanner and software is regarded as a promising method of acquiring replicas from human body indirectly. It would be very helpful if we could predict the characteristics of 2D pattern from the simple parameters related to 3D shape for ordinary user. Therefore, in this study, investigation of 2D pattern of waist/abdominal area from the 3D geometrical model was conducted for the pattern development of waist nipper. To create body models and develop the surface of them, one ortho commonly used CAD/CAM program, IDEAS(UGS-plm solutions, USA) was used. As for the size of the models, the width, thickness, and circumference ranges of adult women's torso reported in National Anthropometric Survey of Korea (1997) were used as a standard model. Seven size variations were made by changing the width of the waist only, from 19 cm to 40 cm. Therefore, simulated body models include not only the normal body but also obese body who has wider waist and abdomen width than hip width. As results, it was found that the curvature of the unfolded 2D pattern around the abdominal area decreases as the waist width increases. As the width of the waist increases more and more, so that the comparative ratios around the torso becomes in abnormal ranges, there appears inflection points and the direction of curvature was changed. 2D Patterns obtained in this research were quantified by curvature, length of the curve and angle of deflection in the reference frame box for the convenience of the actual pattern making process. It was also possible to find that the shape of patterns of abnormal body resulted in a quite interesting change in the curves of 2D pattern, which could be applied to the custom made waist nipper for obese women.

Development of 2D Tight-fitting Collar Pattern from 3D Scan Data of Various Types of Men's Dressform (남성 체형별 인대의 3차원 형상 데이터와 칼라 패턴 개발)

  • Jeong Yeon-Hee;Kim So-Young;Hong Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.722-732
    • /
    • 2006
  • The pattern making of the tight-fitting collars which often used in diving suits, dance wear, or cycle wear has not been fully established. To develop tight-fitting collar pattern directly from 3D images from the representative somatotypes, dressforms developed by Jaeun Jung were used. The 3D scan data of the four male dressforms were obtained using Exyma-1200. Triangle Simplification and the Runge-Kutta method were applied to reduce the 3D scan data points and to make the segmented triangular patches in a plane from 3D data. As results, apparent differences between the tight-fitting collar patterns obtained from the 3D scan data and the ordinary 2D collar patterns were found around the center back line. The curvatures of the center back line were higher in all types of the tight-fitting collar than in the ordinary collar pattern. Relative differences in the shape of collar lines among four representative Korean men were reported. To fit the curved shape of the back neckline, 1.8 cm should be reduced from the upper neckline in average. We suggested the direct pattern making method for the 2D tight-fitting collar patterns considering the 3D shape of various types of men's dressform.

Optimal Matrix Standardization for Pattern Flattening Using Grid Method -Focused on Young Women's Upper Front Shell- (Grid method에 의한 3차원 형상의 평면전개를 위한 optimal matrix 표준화 연구 -$18{\sim}24$세 여성 Upper Front Shell을 중심으로-)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1242-1252
    • /
    • 2006
  • Many applications in computer graphics require complex, highly detailed models. However, to control processing time, it is often desirable to use approximations in place of excessively detailed models. Therefore, we have developed the notion of an optimal matrix to simplify the model surface which can then rapidly obtain high quality 2D patterns by flattening the 3D surface. Firstly, the woman's 3D body was modeled based on Size Korea data. Secondly, the 3D model was divided by shell and block for the pattern draft. Thirdly, each block was flattened by the grid and bridge method. Finally, we select the optimal matrix and demonstrate it's efficiency and quality. The proposed approach accommodates surfaces with darts, which are commonly utilized in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. This can facilitate much better approximations, in both efficiency and exactness.