• 제목/요약/키워드: 2D Strain Failure Theory

검색결과 7건 처리시간 0.019초

2D 변형률 파손 이론을 이용한 복합재료의 굽힘 거동 해석 (A Study on Bending Behaviors of Laminated Composites using 2D Strain-based Failure Theory)

  • 김진성;노진호;이수용
    • 항공우주시스템공학회지
    • /
    • 제11권5호
    • /
    • pp.13-19
    • /
    • 2017
  • 본 연구에서는 굽힘 하중을 받는 복합재료 적층판의 파손 해석을 위하여 2D 변형률 기반 파손 이론을 적용하였다. 복합재료 적층판의 비선형 기계적 거동을 모사하기 위하여, 선형 증분 접근 방식을 적용하고 단위 길이 적층판에 대한 점진적 파손 해석을 수행하였다. 크로스플라이 및 준등방성 적층 패턴에 대하여 3점 굽힘 시험을 수행하고 해석 결과와 비교 검증하였다.

굽힘 하중에 의한 복합재료 파손 예측 연구 (Failure Prediction for Composite Materials under Flexural Loading)

  • 김진성;노진호;이수용
    • 한국항공우주학회지
    • /
    • 제45권12호
    • /
    • pp.1013-1020
    • /
    • 2017
  • 본 연구에서는 굽힘 하중을 받는 복합재료 적층판에 대한 파손 강도를 예측하기 위하여 2D 변형률 기반의 파손 이론을 적용한 유한요소 해석을 수행하였다. 복합재료 적층판 내각 층의 파손 모드에 따른 강성저하를 고려하기 위해 점진적 파손 해석 방법을 적용하였다. 크로스 플라이와 준등방성 복합재 적층판에 대하여 3점 굽힘 시험을 수행하였다. 최대응력 이론, 최대 변형률 이론, 그리고 Tsai-Wu 파손 이론을 적용한 유한요소 해석을 수행하였다. 시험 및 파손 이론에 따른 해석 결과 비교를 통하여 2D 변형률 파손 이론의 정확성을 검증하였다.

A Study on a Composite Laminate Pull-through Joint

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Seo, Bum-Kyung;Lee, Soo-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, composite laminate pull-through resistance was analyzed using the FEM method and compared with test results. 2D and 3D simplified FEM models, a nonlinear analysis, and a progressive failure analysis utilizing three composite laminate failure theories Maximum Stress, Maximum Strain, and Tsai-Wu were used to predict the FEM results with the test results. The load and boundary conditions of the test were applied to the FEM to simulate the test. A composite laminate pull-through test (ASTM D7332 Proc. B) was designed with a special fixture to collect more precise data. The test results were compared with the FEM analysis results.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.