• 제목/요약/키워드: 2D Joints

검색결과 291건 처리시간 0.023초

등속조인트 방식에 따른 공회전 진동특성 연구 (A Study on the Characteristics of Idle Vibration due to the Type of Constant Velocity Joints)

  • 사종성;신양현;강태원;김찬묵
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-190
    • /
    • 2008
  • This paper deals with the characteristics of idle vibration due to the type of constant velocity joints. Based on the kinematics model of constant velocity joints, a offset between the tripod center and tullip center plays a important role in generating unwelcome forces. Moreover, it induced additional forces in lateral direction of a vehicle movement according to the angle of the spider in idle vibration. The difference of mass for each constant velocity joint types affect the natural frequency of the driveshaft and the powertrain. When the static torque is applied to the constant velocity joints, the natural frequencies of the driveshaft are reduced nearby 50Hz. There will be a big opportunity that the dirveshaft and constant velocity joints would be a transfer path of idle vibration at D or R gear range. Experiments indicate that TJ type is better than SFJ and DOJ in idle vibration.

복합재 하이브리드 조인트의 파손강도에 관한 연구 (A Study on Failure Strength of the Hybrid Composite Joint)

  • 이영환;박재현;안정희;최진호;권진회
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.7-13
    • /
    • 2009
  • 복합재료가 항공기 구조물 및 기계 부품 등에 폭 넓게 적용됨에 따라, 복합재료 구조들에서 가장 취약한 복합재료 체결부의 설계는 매우 중요한 연구분야로 대두되긴 있다. 본 논문에서는 접착 체결구조와 기계적 체결구조의 조합으로 되어 있는 하이브리드 조인트의 파손강도를 평가하고 예측하였다. 피착제의 두께, w/d, e/d가 서로 다른 10가지 하이브리드 조인트 시험편을 제작하여 평가하였다. 접착 체결구조와 기계적 체결구조의 파손 판정을 위해 파손영역법과 파괴면적지수법이 각각 적용 되었으며, 두 체결부위 중 어느 한족이 먼저 파손기준에 도달할 경우, 하이브리드 조인트가 파손되었다고 가정하였다. 이상의 실험과 해석결과로부터, 하이브리드 조인트 시편의 파손강도는 25.5%, 오차 범위 내에서 예측할 수 있었다.

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향 (Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20)

  • 김준태;허회준;김현준;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.

이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가 (Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar)

  • 황훈희
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.

위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사 (Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic)

  • 길성희;김병덕;권정락;윤기봉
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.64-68
    • /
    • 2013
  • 열가소성 플라스틱배관의 전기융착부에 대한 비파괴검사방법은 융착부의 안전성을 확보하고 장기적인 신뢰성을 확보하기 위한 방법이다. 정상적인 방법에 의하여 융착된 접합부에서도 배관의 진원도와 전기융착 소켓과의 진원도 차이 또는 기공 등에 의해 융착부에 결함이 발생할 수 있다. 본 연구에서는 위상배열초음파를 이용하여 손상된 폴리에틸렌 전기융착부의 검사를 수행하였다. 검사 대상인 250mm 직경의 폴리에틸렌 배관 전기융착부는 1994년 12월에 융착되었으며 실제 작동 압력은 2.45kPa이다. 2004년 2월 소켓 이음부 근처에서 가스가 누설되어 수거되었다. 손상된 전기융착부에 대하여 첫 번째로 육안검사를 실시하고 다음에 위상배열초음파를 이용한 비파괴검사를 실시하였다. 그리고 절단 검사를 실시하여 각각의 검사 결과와 비교하였으며 위상배열 초음파를 이용한 검사결과와 절단 검사 결과가 동일함을 확인하였다.

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2011년도 추계 총회 및 창립 30주년 기념 심포지엄
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

파워흐름해석을 위한 비보존 조인트로 연성된 평판 구조물의 파워투과반사계수 해석 (Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis)

  • Song, J-H;Hong, S-Y;Park, Y-H;Park, D-H;Kil, H-G
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.353.2-353
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many practical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. (omitted)

  • PDF

고온 Brazed Joint 파괴 거동에 대한 연구 (Investigations about the Fracture behaviour on High-Temperature Brazed NiCr20TiAl/BNi-5 Joints)

  • 스테픈스;배석천;비일라게;다머
    • Journal of Welding and Joining
    • /
    • 제2권1호
    • /
    • pp.18-24
    • /
    • 1984
  • With the use of a new method the deformation mechanism of high-temperature-brazed joints can be obtained in a very short time. For that purpose a SEM(Scanning Electron Microscope) was equipped with a high temperature tensile testing machine. By means of SEM-investigation the damage behaviour of high-temperature-brazed joints is exa mined at elevated temperature. Based on these it is possible to make a qualification of the influence over single parts on the damage beginning and behaviour in dependence of temperature. This shall be shown exemplarily for the high temperature material NiCr20TiAl (Nimonic 80A).

  • PDF