• Title/Summary/Keyword: 2D Entity Attribute

Search Result 2, Processing Time 0.015 seconds

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.

Extraction of Road Structure Elements for Developing IFC(Industry Foundation Classes) Model for Road (도로분야 IFC 확장을 위한 도로시설의 구성요소 도출)

  • Moon, Hyoun-Seok;Choi, Won-Sik;Kang, Leen-Seok;Nah, Hei-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1195-1203
    • /
    • 2014
  • Since IFC (Industry Foundation Classes) 4 is based on the representation of 3D elements for an architecture project, and does not define standardized shapes for civil projects such as roads, bridges, and tunnels etc, it has limitations in securing interoperability for exchanging a shape information model for the civil projects. Besides, since road facilities have a linear reference, which is modeled along the center alignment, it is difficult the designers to create a standardized 3D road model. The aim of this study is to configure structure elements and their attribute for a road in the perspective of 3D design for developing a shape information model for the road. To solve these issues, this study analyzes the design documents, which consist of a road design handbook, guide, specifications and standards, and then extract shape elements and their attributes of road structures. Such shape elements are defined as an entity item and we review a hierarchical structure of a road shape defined by a virtual road model. The detailed elements and their attributes can be utilized as a 3D shape information model for constructing BIM (Building Information Modeling) environment for Infrastructures. Besides, it is expected that the suggested items will be utilized as a base data for extending to IFC for a road subdividing the detailed shapes, types and attributes for road projects.