• Title/Summary/Keyword: 2D & 3D 비쥬얼 정보

Search Result 7, Processing Time 0.022 seconds

A Design of A Dynamic Configurational Multimedia Spreadsheet for Effective HCI (효과적인 HCI를 위한 동적 재구성 멀티미디어 스프레드쉬트 설계)

  • Jee Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • The multimedia visualizational spreadsheet environment is shown to be extremely effective in supporting the organized visualization of multi-dimensional data sets. In this paper, we designed the visualization model that consists of the configurational 2D arrangement of spreadsheet elements at run time and each spreadsheet element has a novel framestack. As the feature, it supports 3D data structure of each element on the proposed model. It enables the visualization spreadsheet 1) to effectively manage, organize, and compactly encapsulate multi-dimensional data sets, 2) to reconfigure cell-structures dynamically according to client request, and 3) to rapidly process interactive user interface. Using several experiments with scientific users, the model has been demonstrated to be a highly interactive visual browsing tool for 2D and 3D graphics and rendering in each frame.

  • PDF

Development of Pre-Service and In-Service Information Management System (iSIMS) (원전 가동전/중 검사정보관리 시스템 개발)

  • Yoo, H.J.;Choi, S.N.;Kim, H.N.;Kim, Y.H.;Yang, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • The iSTMS is a web-based integrated information system supporting Pre-Service and In-Service Inspection(PSI/ISI) processes for the nuclear power plants of KHNP(Korea Hydro & Nuclear Power Co. Ltd.). The system provides a full spectrum coverage of the inspection processes from the planning stage to the final report of examination in accordance with applicable codes, standards, and regulatory requirements. The major functions of the system includes the inspection planning, examination, reporting, project control and status reporting, resource management as well as objects search and navigation. The system also provides two dimensional or three dimensional visualization interface to identify the location and geometry of components and weld areas subject to examination in collaboration with database applications. The iSIMS is implemented with commercial software packages such as database management system, 2-D and 3-D visualization tool, etc., which provide open, updated and verified foundations. This paper describes the key functions and the technologies for the implementation of the iSIMS.

Localization of A Moving Vehicle using Backward-looking Camera and 3D Road Map (후방 카메라 영상과 3차원 도로지도를 이용한 이동차량의 위치인식)

  • Choi, Sung-In;Park, Soon-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.160-173
    • /
    • 2013
  • In this paper, we propose a new visual odometry technique by combining a forward-looking stereo camera and a backward-looking monocular camera. The main goal of the proposed technique is to identify the location of a moving vehicle which travels long distance and comes back to the initial position in urban road environments. While the vehicle is moving to the destination, a global 3D map is updated continuously by a stereo visual odometry technique using a graph theorem. Once the vehicle reaches the destination and begins to come back to the initial position, a map-based monocular visual odometry technqieu is used. To estimate the position of the returning vehicle accurately, 2D features in the backward-looking camera image and the global map are matched. In addition, we utilize the previous matching nodes to limit the search ranges of the next vehicle position in the global map. Through two navigation paths, we analyze the accuracy of the proposed method.

An Extension of Interactive Media System for Mobile Device (모바일 단말을 위한 인터렉티브 미디어 시스템의 확장)

  • Han, Seung-Jin;Ryu, Eun-Seok;Yoo, Hyuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.201-204
    • /
    • 2005
  • 현재의 세계적인 트렌드인 HCI(Human Computer Interaction)에서 사용자의 기호나 의견 등을 반영하는 인터렉티브 미디어(Interactive Media)는 빠질 수 없는 주제다. 본 연구팀은 모바일 단말환경에서 사용자의 인터렉션을 통한 서비스를 제공할 수 있는 IMS(Interactive Media System)를 설계하고, 이를 PDA 상에 구현하였다. 기존의 연구들이 보여주는 링크의 형태로만 미디어를 지원하는 방식은 CPU 등의 자원이 부족한 모바일 환경에서는 부담이 될 수 있다. IMS 는 이를 벗어나 내부적으로 미디어 오브젝트를 지원하는 방식을 사용하여 모바일 환경에 적합하게 연산속도를 개선하고 있다. 또한 이러한 방식으로 인하여 생길 수 있는 문제인 미디어 포맷의 지원에 대한 제약을 극복하기 위해 확장성 있는 구조로 설계되어 이미지와 텍스트, 백터그래픽 만을 제공하던 단순한 시스템에서 H.264 와 MPEG4 AAC 와 같은 여러 모듈들이 더해졌다. 또한 OpenGL 모듈이 추가되고 3D 오브젝트들이 새롭게 정의됨으로써 IMS 는 IML 을 통해 마크업 언어차원에서 3D 그래픽을 지원할 수 있게 되었고 2D 와 3D 를 함깨 사용한 다양한 비쥬얼 구성이 가능하게 되었다. 본 논문에서는 IMS 의 확장성 있는 구조와 OpenGL 을 추가하고 새로운 미디어 오브젝트를 정의하는 과정 등을 다루며 언급한 내용을 자세히 소개한다.

  • PDF

'EVE-SoundTM' Toolkit for Interactive Sound in Virtual Environment (가상환경의 인터랙티브 사운드를 위한 'EVE-SoundTM' 툴킷)

  • Nam, Yang-Hee;Sung, Suk-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.273-280
    • /
    • 2007
  • This paper presents a new 3D sound toolkit called $EVE-Sound^{TM}$ that consists of pre-processing tool for environment simplification preserving sound effect and 3D sound API for real-time rendering. It is designed so that it can allow users to interact with complex 3D virtual environments by audio-visual modalities. $EVE-Sound^{TM}$ toolkit would serve two different types of users: high-level programmers who need an easy-to-use sound API for developing realistic 3D audio-visually rendered applications, and the researchers in 3D sound field who need to experiment with or develop new algorithms while not wanting to re-write all the required code from scratch. An interactive virtual environment application is created with the sound engine constructed using $EVE-Sound^{TM}$ toolkit, and it shows the real-time audio-visual rendering performance and the applicability of proposed $EVE-Sound^{TM}$ for building interactive applications with complex 3D environments.

Architectural Design using Visual and Tactile Guide in the Virtual Table (가상테이블상에서 비쥬얼 및 택타일 가이드를 이용한 건축 디자인)

  • 이선민;최수미;권두영;김명희
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.2
    • /
    • pp.189-198
    • /
    • 2004
  • As display devices evolve, computer-based work environments are also becoming better suited to actual application tasks. This paper discusses the development of an architectural design system using the virtual table, which is a table-type projection system. It consists of the interactive VR modeler, the hybrid tracker and the architectural interpreter. The interactive VR modeler offers visual and tactile guide such as grid interaction, a tangible transparent prop and reference objects, so that a user can design architectural 3D models more easily and intuitively on the virtual table. The hybrid tracker includes two types of tracking methods for viewpoint according to the user's view and hand interaction: namely, vision-based tracking and magnetic tracking. The architectural interpreter automatically transforms simple 3D masses into a basic construction form that has architectural knowledge. The proposed system has advantage in the sense that it is suitable for collaboration among several users, allowing them to view graphical objects in stereoscopic view with direct 3D manipulation. Thus, it can be effectively used for architectural simulation and user-participated design.

The 2D Drawing-Based Authoring Tool for Scientific Inquiry Learning Virtual Environments (과학적 탐구학습 가상환경을 위한 2차원 Drawing 기반 저작도구)

  • Im, Jae-Won;Park, Kyoung-Shin;Cho, Yong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1303-1311
    • /
    • 2009
  • This paper describes a new visual VR authoring tool called DEVISE (Drawing Environment for VR-based Inquiry-learning Science Education) which is designed to support scientific inquiry learning. DEVISE allows users with no programming expertise to easily build the science inquiry learning VR contents by using 2D drawing interface to place 3D objects and specify properties of the virtual worlds or objects. This paper first describes the related works of VR authoring tools and inquiry learning virtual environments. It also explains SASILE, an integrated virtual environment system for supporting science inquiry learning, and its problems. Then, it describes DEVISE system components and its workflow, and it discusses the observation results of user evaluations of developing science inquiry-learning VR contents.