• Title/Summary/Keyword: 28GHz antennas

Search Result 24, Processing Time 0.027 seconds

Design and Performance Analysis of 5G Mobile Communication Array Antenna in Millimeter-Wave (mm-Wave) Band (밀리미터파(mm-Wave) 대역 5G 이동통신 Array 안테나의 설계와 성능분석 연구)

  • Lee, Sung-hun;Lee, Chang-Kyo;Park, Jae-Hong;Cho, Soo-Hyun;Choi, Seung-Ho;Kim, Tae-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1165-1171
    • /
    • 2020
  • In this study, we designed a single antenna taking into account the performance, such as return loss and radiation pattern, of 28 GHz and 38 GHz array antennas for 5G mobile devices. In millimeter wave band communication, high path loss occurs between transmission and reception, unlike in conventional microwave bands. In the design of array antennas for 5G millimeter wave terminals, antenna performance such as antenna gain, bandwidth, isolation between antenna elements, side-lobe level(SLL), etc. should be further considered. The performance of the designed array antennas was analyzed by spacing the antenna elements at half a wavelength. Our results proved the validity of the design and its suitability for applications in mm-Wave by showing that the 28 GHz and 39 GHz array antennas had antenna gains of 13.5 dBi and 11.3 dBi and return losses below -18.4 dB and -20 dB, correspondingly.

Performance Comparison of 28 GHz Array Antennas for 5G Mobile Devices (5G 단말용 28 GHz 배열안테나의 안테나 타입별 성능 비교 연구)

  • Kim, Sun-Ryul;Hong, Young-Taek;Bang, Ji-Hoon;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • In this paper, three types of array antennas for 5G mobile devices operating at 28 GHz were designed, and their performances were compared. The isolation between antenna elements was compared based on $S_{21}$. The $S_{21}$ of dipole, slot, and patch type are -13.76 dB, -16.88 dB, and -11.47 dB, respectively, with the slot-type antenna having the highest isolation. In order to compare the beam coverage performance, several characteristics such as beam width and maximum beam steering angle were analyzed. The analysis shows that the slot type has the widest steering angle of $63^{\circ}$ while the patch type has narrowest with $36^{\circ}$. In addition, to verify the performance of the antennas in the actual usage environment of the device, antenna characteristics in talk mode and data mode were analyzed through simulation. The results confirmed that the slot-type array antenna is the most suitable array antenna element for 28 GHz 5G mobile devices.

Study on Broadband HTS Antenna Array for Satellite Communication (위성통신용 광대역 고온초전도 배열 안테나에 관한 연구)

  • 정동철;윤창훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.770-775
    • /
    • 2004
  • Although $High-T_c $superconducting HTS antennas have high efficiency and high gain, narrow bandwidth due to the high Q is the major limitation for application of satellite communication and mobile communication. Defining bandwidth as the frequency range over which standing wave ratio (SWR) is 2:1 or less, HTS antenna bandwidths are typically less than 1 %. Thus considerable effort has been focused on developing HTS antennas for broadband operation. In this work the HTS antenna array, using the bipin antenna which consisted of two triangle-radiation patches, was designed and fabricated using a ${YBa}_2{Cu}_3{O}_7x (YBCO)$ superconducting thin film on a MgO substrate for broadband operation. Also gold antennas with the same dimension as our HTS antennas were fabricated on the MgO substrate for the comparison. Experimental results for both antennas were reported in terms of radiation patterns, return losses, bandwidths and other various characteristics. The center frequency of HTS antennas was 20.28 GHz and the bandwidth obtained was significant 10 %.

Planar Microstrip Patch Antenna for 5G Wireless Applications

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • This paper describes a planar microstrip patch antenna designed on dielectric substrate. Two types of planar microstrip patch antennas are studied for the 5G wireless applications, one type is conventional microstrip structure, the other type is stacked microstrip structure fed by coaxial probe. Using electromagnetically coupling method, stacked microstrip patch antenna employing a multi-layer substrate structure was designed. The results indicate that the proposed stacked microstrip patch antenna performs well at 5G wireless service bandwith a broadband from 3.42GHz to 3.70GHz. The impedance bandwidth(VSWR≤2) is 360MHz(10.28%) from 3.42GHz to 3.78GHz. In this paper, through the designing of a stacked microstrip patch antenna, we have presented the availability for 5G wireless repeater system.

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

Reactive- Loaded Interstitial Antenna (리엑턴스가 장하된 인체에 사용되는 삽입형 안테나)

  • Ahn, Hee-Ran;Myung, Noh-Hoon;Kim, Bumman
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.979-984
    • /
    • 2003
  • A reactive-loaded interstitial antenna(RLIA) is proposed for 2.45 GHz. It basically consists of a coaxial cable and a reactive load(RL). The RL is tipped at the end of the antenna and contributes to almost perfect matching and desirable heating area. For the almost perfect matching, a matching technique based on transmission line theory is suggested and the RLIA immersed in muscle phantom is designed, fabricated, measured and compared. The measured return loss of the RLIA is - 28.377 dB, which may be considered the best among those reported. Due to the excellent matching performance, the RLIA can also be applied for the treatment of deep-seated tumor or cancer with only one RLIA.

Compact Circularly Polarized Antenna with a Capacitive Feed for GPS/GLONASS Applications

  • Jeong, Seong Jae;Hwang, Keum Cheol;Hwang, Do-In
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.767-770
    • /
    • 2012
  • This letter presents a novel compact circularly polarized patch antenna for Global Positioning System/Global Navigation Satellite System (GPS/GLONASS) applications. The proposed antenna is composed of a simple square radiating patch fed by a capacitive dual-feeder to increase the impedance bandwidth and a lumped element hybrid coupler to achieve the broadband characteristic of the axial ratio (AR). The realized antenna dimensions are $28mm{\times}28mm{\times}4mm$, which is the most compact size among the dual-band GPS/GLONASS antennas reported to date. The measured results demonstrate that the proposed antenna has a gain of 2.5 dBi to 4.2 dBi and an AR of 0.41 dB to 1.51 dB over the GPS/GLONASS L1 band (1.575 GHz to 1.61 GHz).

Frequency Agile Properties of Microstrip Antenna Using Quartz (안테나의 주파수 특성에 관한 연구)

  • Yun, Chang-Jin;Ha, Yong-Man;Hwang, Hyun-Suk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.715-718
    • /
    • 2002
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. When the bias is applied on them, thickness of the substrate is varied according. to the piezoelectric phenomenon. The microstrip patch antenna using Quartz substrate was fabricated and designed by Ensemble v 7.0 simulator. We fabricated the microstrip antennas using Quartz(Y-cut) as its substrate. When the operating frequencies of the microstrip antenna were 7.045GHz, 7.773GHz 8.18GHz the frequency shifts versus electric field, Emax=4[kV/cm], were 21MHz, 26MHz and 28MHz, respectively.

  • PDF

Ultra-wideband Components Utilizing a Uniplanar Ultra-wideband Balun (단일평면 초광대역 발룬을 이용한 초광대역 부품)

  • Kim, Young-Gon;Woo, Dong-Sik;Kim, In-Bok;Song, Sun-Young;Kim, Kang-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.30-36
    • /
    • 2009
  • Various types of ultra-wideband components with 10's of GHz bandwidth have been developed utilizing a uniplanar ultra-wideband balun, which is a simple microstrip-to-coplanar stripline (CPS) transition structure with the operating frequency range from near DC to over 40 GHz. Developed ultra-wideband components include antennas, mixers, doublers, and detectors in a carrier type and in a surface mountable type. One of surface mountable components, for example, single balanced doubler has output frequency 8 ~ 28 GHz. These high-Performance, low-cost ultra-wideband components may replace expensive conventional components, and also can be used to develop new multi-GHz OWE application areas.

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.