• Title/Summary/Keyword: 24 scenarios

Search Result 236, Processing Time 0.03 seconds

Projections of Demand for Cardiovascular Surgery and Supply of Surgeons

  • Lee, Jung Jeung;Park, Nam Hee;Lee, Kun Sei;Chee, Hyun Keun;Sim, Sung Bo;Kim, Myo Jeong;Choi, Ji Suk;Kim, Myunghwa;Park, Choon Seon
    • Journal of Chest Surgery
    • /
    • v.49 no.sup1
    • /
    • pp.37-43
    • /
    • 2016
  • Background: While demand for cardiovascular surgery is expected to increase gradually along with the rapid increase in cardiovascular diseases with respect to the aging population, the supply of thoracic and cardiovascular surgeons has been continuously decreasing over the past 10 years. Consequently, this study aims to achieve guidance in establishing health care policy by analyzing the supply and demand for cardiovascular surgeries in the medical service area of Korea. Methods: After investigating the actual number of cardiovascular surgeries performed using the National Health Insurance claim data of the Health Insurance Review and Assessment Service, as well as drawing from national statistics concerning the elderly population aged 65 and over, this study estimated the number of future cardiovascular surgeries by using a cell-based model. To be able to analyze the supply and demand of surgeons, the recent status of new surgeons specializing in thoracic and cardiovascular surgeries and the ratio of their subspecialties in cardiovascular surgeries were investigated. Then, while taking three different scenarios into account, the number of cardiovascular surgeons expected be working in 5-year periods was projected. Results: The number of cardiovascular surgeries, which was recorded at 10,581 cases in 2014, is predicted to increase consistently to reach a demand of 15,501 cases in 2040-an increase of 46.5%. There was a total of 245 cardiovascular surgeons at work in 2014. Looking at 5 year spans in the future, the number of surgeons expected to be supplied in 2040 is 184, to retire is 249, and expected to be working is 309-an increase of -24.9%, 1.6%, and 26.1%, respectively compared to those in 2014. This forecasts a demand-supply imbalance in every scenario. Conclusion: Cardiovascular surgeons are the most central resource in the medical service of highly specialized cardiovascular surgeries, and fostering the surgeons requires much time, effort, and resources; therefore, by analyzing the various factors affecting the supply of cardiovascular surgeons, an active intervention of policies can be prescribed for the areas that have failed to meet the appropriate market distributions.

Risk Assessment of Volatile Organic Compounds (VOCs) and Formaldehyde in Korean Public Facilities: Derivation of Health Protection Criteria Levels

  • Kim, Ho-Hyun;Lim, Young-Wook;Shin, Dong-Chun;Sohn, Jong-Ryeul;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.121-133
    • /
    • 2011
  • This study suggests criteria to conduct a risk assessment of VOCs and formaldehyde in uncontrolled public facilities. Pollutants and facilities were selected based on two years of monitoring data and exposure scenarios in 573 uncontrolled public facilities, composed of 10 types of public institutions. With the exception of social welfare facilities, lifetime ECRs of formaldehyde and benzene in each facility were higher in employees than in users, except in social welfare facilities. In social welfare facilities, the risk of benzene for users ($1{\times}10^{-5}$) was higher than that of workers ($1{\times}10^{-6}$) because facility users live in the facility 24 hours per day, compared to workers who spend an average of 8 hours per day in the facility. The risk of benzene to workers in restaurants, academies, performance halls, internet cafe and pubs were estimated as high as $1{\times}10^{-4}$ and the risk to workers in the theaters and karaoke bars were recorded as $1{\times}10^{-5}$. Because lifetime ECRs of carcinogens exceeded $1{\times}10^{-4}$ for workers and users in most facilities, risk management of formaldehyde and benzene in these facilities is necessary. Although HQs of toluene and xylenes did not exceed 1.0, their HQs did exceed 0.1 in some facilities, so they were evaluated as potentially harmful materials. Additionally, criteria for health protection in IAQ by facility are suggested at $60-100\;{\mu}g/m^3$ for formaldehyde, $400-500\;{\mu}g/m^3$ for TVOCs, $10-20\;{\mu}g/m^3$ for benzene, $150-170\;{\mu}g/m^3$ for toluene and $100\;{\mu}g/m^3$ for xylenes, based on the survey on IAQ and HRA methodology. The excess rates of IAQ to health protection criteria in all facilities were 16% for formaldehyde, 8% for TVOCs and benzene, 9% for toulene, and 5% for xylenes.

A Numerical Study for the Atrium Smoke Control by Fire Shutter and Evacuation (방화셔터를 이용한 아트리움 제연과 피난안전에 관한 수치해석 연구)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.50-59
    • /
    • 2010
  • Four fire scenarios, as the cases of fire sizes of 2 MW and 5 MW, and no installation and activation of atrium fire shutter for dormitory building of Daegu 'D college', were developed and fire simulations were run using FDS (ver. 5.5.0) and Pathfinder 2009 programs. By assessing fire and evacuation, the effects of atrium fire shutter and vents on the smoke control of atrium were evaluated and this study also analyzed fire hazard and egress safety for occupants in the dormitory. Fire shutter's preventing smoke transport around atrium was much effective, but smoke layer descended down the design limit of smoke height and kept about 2 m height from the atrium floor in all cases because flow rate through vents was not enough. For the case of 5 MW fire and no fire shutter, fire hazard was higher due to visibility than temperature and allowable egress time to stairwell was short less than 5 seconds for the occupants on the floors of 4F to 7F. For total occupants, egress time out of main doorway was calculated about 136 seconds. It is sure that additional systems improving the performance of smoke control need to be installed for more safe evacuation.

Determination of Model Parameters of Surface Cover Materials in Evaluation of Sediment Reduction and Its Effects at Watershed Scale using SWAT (토양유실 저감을 위한 지표피복 저감효과 변수 결정 및 SWAT 모형 유역단위 효과 분석)

  • Kum, Donghyuk;Jang, Chun Hwa;Shin, Min Hwan;Choi, Joong-Dae;Kim, Bomchul;Jeong, Gyo-Cheol;Won, Chul Hee;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.923-932
    • /
    • 2012
  • The purpose of this study was to determine parameters of surface cover materials and evaluation the effects on runoff and sediment reductions with rice straw mat with PAM at watershed scale using the SWAT model. In this study, 1) regression equation of CN for rice straw mat + PAM using SCS curve number method was developed, 2) the USLE P factor, being able to reflect simulation of rice straw mat + PAM in the agricultural field, was estimated for various slope scenarios with VFSMOD-w. Then regression equation for CN and USLE P factor were used as input data in the SWAT model. Assuming rice straw mat + PAM is applied to radish and potato fields, occupying 24% of agricultural fields at the study watershed. Result of direct runoff without rice straw mat + PAM was $65,964,368\;m^3,$ with rice straw mat + PAM, direct runoff was $65,637,336\;m^3$, $327,031.8\;m^3$ reductions compared without it. Also, result of sediment without rice straw mat + PAM was 163,531 ton, with rice straw mat + PAM, sediment was 84,779 ton, 78,752 ton reduction compared without it. This analysis showed that about 48% sediment reductions would be expected with rice straw mat + PAM. As shown in this study, rice straw mat + PAM would be used as an efficient site-specific BMPs to reduce runoff and sediment discharge from field.

Water temperature assessment on the small ecological stream under climate change (기후변화에 따른 소하천에서의 수온 모의연구)

  • Park, Jung Sool;Kim, Sam Eun;Kwak, Jaewon;Kim, Jungwook;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.313-323
    • /
    • 2016
  • Water temperature affects physical and biological processes in ecologies on river system and is important conditions for growth rate and spawning of fish species. The objective of this study is to compare models for water temperature during the summer season for the Fourchue River (St-Alexandre-de-Kamouraska, Quebec, Canada). For this, three different models, which are CEQUEAU, Auto-regressive Moving Average with eXogenous input and Nonlinear Autoregressive with eXogenous input, were applied and compared. Also, future water temperature in the Fourchue river were simulated and analyzed its result based on the CMIP5 climate models, RCP 2.6, 4.5, 8.5 climate change scenarios. As the result of the study, the water temperature in the Fourchue river are actually changed and median water temperature will increase $0.2{\sim}0.7^{\circ}C$ in June and could decrease by $0.2{\sim}1.1^{\circ}C$ in September. Also, the UILT ($24.9^{\circ}C$) for brook trout are also likely to occurred for several days.

Device Virtualization Framework for Smart Home Cloud Service (스마트홈 클라우드 서비스를 위한 디바이스 가상화 프레임워크)

  • Kim, Kyungwon;Park, Jongbin;Kum, Seungwoo;Jung, Jongjin;Yang, Chang-Mo;Lim, Taebeom
    • Telecommunications review
    • /
    • v.24 no.5
    • /
    • pp.677-691
    • /
    • 2014
  • Connectivity is becoming more important keywords recently. For example, many devices are going to be connected to the internet. It is usually called as the IoT(internet of things). Many IoT devices can be evolved as a part of giant system of the world wide web. It is a great opportunity for us, because many new services can have emerged through this paradigm. In this paper, we propose a device virtualization framework for smart home service. The proposed framework connects the many home appliances devices and the internet using a dynamic protocol conversion. After our protocol conversion for device virtualization, our framework provides a RESTful API to access the resources of device through the internet. Therefore, the proposed framework can provide a variety of services, so it also can be developed into the ecosystem for smart home service. The current framework version only supports UPnP enabled devices of the home, but it can easily be extended to many other home middleware solutions. To verify the feasibility of the framework, we have implemented several service scenarios.

The Application of Fuzzy Logic to Assess the Performance of Participants and Components of Building Information Modeling

  • Wang, Bohan;Yang, Jin;Tan, Adrian;Tan, Fabian Hadipriono;Parke, Michael
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.4
    • /
    • pp.1-24
    • /
    • 2018
  • In the last decade, the use of Building Information Modeling (BIM) as a new technology has been applied with traditional Computer-aided design implementations in an increasing number of architecture, engineering, and construction projects and applications. Its employment alongside construction management, can be a valuable tool in helping move these activities and projects forward in a more efficient and time-effective manner. The traditional stakeholders, i.e., Owner, A/E and the Contractor are involved in this BIM system that is used in almost every activity of construction projects, such as design, cost estimate and scheduling. This article extracts major features of the application of BIM from perspective of participating BIM components, along with the different phrases, and applies to them a logistic analysis using a fuzzy performance tree, quantifying these phrases to judge the effectiveness of the BIM techniques employed. That is to say, these fuzzy performance trees with fuzzy logic concepts can properly translate the linguistic rating into numeric expressions, and are thus employed in evaluating the influence of BIM applications as a mathematical process. The rotational fuzzy models are used to represent the membership functions of the performance values and their corresponding weights. Illustrations of the use of this fuzzy BIM performance tree are presented in the study for the uninitiated users. The results of these processes are an evaluation of BIM project performance as highly positive. The quantification of the performance ratings for the individual factors is a significant contributor to this assessment, capable of parsing vernacular language into numerical data for a more accurate and precise use in performance analysis. It is hoped that fuzzy performance trees and fuzzy set analysis can be used as a tool for the quality and risk analysis for other construction techniques in the future. Baldwin's rotational models are used to represent the membership functions of the fuzzy sets. Three scenarios are presented using fuzzy MEAN, AND and OR gates from the lowest to intermediate levels of the tree, and fuzzy SUM gate to relate the intermediate level to the top component of the tree, i.e., BIM application final performance. The use of fuzzy MEAN for lower levels and fuzzy SUM gates to reach the top level suggests the most realistic and accurate results. The methodology (fuzzy performance tree) described in this paper is appropriate to implement in today's construction industry when limited objective data is presented and it is heavily relied on experts' subjective judgment.

Development and Application of CCGIS for the Estimation of Vulnerability Index over Korea (한반도 기후변화 취약성 지수 산정을 위한 CCGIS의 개발 및 활용)

  • Kim, Cheol-Hee;Song, Chang-Keun;Hong, You deok;Yu, Jeong Ah;Ryu, Seong-Hyun;Yim, Gwang-Young
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • CCGIS (Climate Change Adaptation Toolkit based on GIS) was developed to use as a tool for the climate change assessment and any relevant tasks involving climate change adaptation policy over Korean peninsula. The main objective of CCGIS is to facilitate an efficient and relevant information for the estimation of climate change vulnerability index by providing key information in the climate change adaptation process. In particular, the atmospheric modeling system implemented in CCGIS, which is composed of climate and meteorological numerical model and the atmospheric environmental models, were used as a tool to generate the climate and environmental IPCC SRES (A2, B1, A1B, A1T, A1FI, and A1 scenarios) climate data for the year of 2000, 2020, 2050, and 2100. This article introduces the components of CCGIS and describes its application to the Korean peninsula. Some examples of the CCGIS and its use for both climate change adaptation and estimation of vulnerability index applied to Korean provinces are presented and discussed here.

Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area- (누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로-)

  • Lee, Eun Ji;Han, Man Hyeong;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.