• Title/Summary/Keyword: 2016 Gyeongju earthquake

Search Result 93, Processing Time 0.023 seconds

A Study on Stabilization of the Collapsed Slope due to Gyeongju Earthquake at Seokguram Access Road based on Geological Investigation (지질학적 조사를 바탕으로 한 경주지진으로 붕괴된 석굴암 진입도로 비탈면의 안정성 평가에 관한 연구)

  • Kim, Seung-Hyun;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.225-242
    • /
    • 2019
  • Rockfall failure at the access road to Seokguram were occurred due to the earthquake on September 12, 2016. A detailed investigation was carried out in order to find out the cause of the rockfall, to identify the risk of the entire sites, and to prepare proper countermeasure methods and mitigation. We checked for geological and topographical characteristics of overall slopes alongside the access road to Seokguram and made a face map. In addition, we analyzed topographical factors caused by the earthquake through calculating a degree of slope, degree of bearing, upslope contributing area, and wetness index with the use of shading relief map. As a result, we confirmed that the large rockfall occurred with a weak section. In this study, we also evaluated the overall slope stability of the entire access road to Seokguram in order to classify it into danger and caution zones depending on the risk of collapse.

Analysis of Coordinate Change about Domestic CORS by Earthquake (지진발생으로 인한 국내 상시관측소 좌표변화 분석)

  • Kim, Min-Gyu;Park, Joon-Kyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.467-475
    • /
    • 2018
  • Recently earthquakes have been increasing worldwide, and the largest earthquake of 5.8 on the Richter scale occurred on September 12, 2016 in the Gyeongju area. After the earthquake, more than 200 aftershocks have occurred from January 2017 to December 2017. The largest earthquake in 2017 was a 4.3-magnitude earthquake near Pohang on November 15. In this study, we tried to analyze the coordinate change due to the earthquake using the data of the CORS(Continuously Operating Reference Station) in Korea. In order to analyze the change of coordinates due to the earthquake in Pohang area on November 15, 2017, data processing was performed by kinematic method. And from January 2017 to December 2017, observation data of 9 stations in Korea were analyzed by relative positioning method and the change of coordinates due to earthquake was analyzed. As a result of the study, it was possible to estimate the instantaneous coordinate change due to the earthquake through the kinematic positioning, and it was suggested that there is no change in the coordinates of the domestic CORS by the relative positioning results. After the 2017 Gyeongju earthquake, aftershocks continue to occur, and it is necessary to monitor the area continuously.

Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique (일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

Seismic Response Characteristics of Domestic Cable-supported Bridges Due to Gyeongju Earthquakes: Case Study (경주 지진에 대한 국내 공용 중 케이블지지교량의 지진응답특성: 사례 연구)

  • Park, Sung Woo;Lee, Seung Han;Choi, Gahee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • This study presents the seismic response characteristics of domestic cable-supported bridges due to 3 earthquakes with magnitudes of 5.1, 5.8, and 4.5 in Richter scale, which occurred around Gyeongju region in 2016. The seismic acceleration response signals, recorded by the seismic acceleration sensors at the free field near bridge and designated positions on bridge, are utilized to characterize the seismic responses of structural elements of cable-supported bridges. The dynamic behaviors of bridges are presented through Fourier transform of acceleration time history. Using the peak accelerations normalized by those at the free fields, amplification effects on the tops of the pylons are analyzed comparatively bridge by bridge. Using aforementioned analyses, the necessity of development on the creteria of alert levels is discussed for the earthquake disaster response of cable-supported bridges.

Evaluation of Design Response Spectrum in Sejong City Using Gyeongju and Pohang Type Seismic Waves (경주·포항형 지진파에 대한 세종시 지역의 설계응답스펙트럼 성능평가)

  • Oh, Hyun Ju;Lee, Sung Hyun;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.503-512
    • /
    • 2024
  • In the seismic design standard, input waves for different levels of seismic performance are proposed in the form of design response spectra. At the time of establishing these standards, measured records of significant earthquakes that occurred domestically, such as the 2016 Gyeongju earthquake and the 2017 Pohang earthquake, were not included. Additionally, for the ground response analysis, shear wave velocities representing ground amplification characteristics were derived from the results of standard penetration tests (N-values) and applied in empirical formulas. This approach may not adequately capture sufficient information about the characteristics of domestic ground properties. Therefore, in this study, seismic records from the Gyeongju and Pohang earthquakes were modified to adjust the bedrock standard design response spectra. Ground response analyses were conducted using shear wave velocity profiles obtained from borehole tests in the Sejong City area. The shape of the response spectrum and ground amplification coefficient obtained from the ground response analysis were then compared with those from existing studies and seismic design standard.

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

RC Short Column Effects on Seismic Performance of Small-Sized Buildings in Korea (국내 소규모 건축물의 단주효과에 대한 내진성능검토)

  • Kim, Kyungtae;Yoo, Chang-Hwan;Park, Kyunghoon;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.545-551
    • /
    • 2016
  • This paper investigates seismic performance of a small-sized single story building in Korea. Nonlinear pushover anlaysis is performed to verify shear failure of RC short columns eventually led to performance degradation. Also, nonlinear time history analysis is performed using the same earthquakes from Gyeongju. Similar failure mode was obtained as in the report where a sudden rupture of the RC columns happened.

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.

A Study on Dissemination of Earthquake Response Technology and Improvement of Practicality through User Demand Surveys (사용자 수요조사를 통한 지진 대응기술의 보급 및 실용성 제고 방안 연구)

  • Choi, SeonHwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.4
    • /
    • pp.33-46
    • /
    • 2021
  • In Korea 2016, the largest earthquake occurred in Gyeongju since the beginning of monitoring earthquakes. Consecutively the second-largest earthquake occurred in Pohang. At that time, immediately after the earthquake, citizens were not notified adequate information for evacuation. In consequence the response process was very confusing and citizens were not able to properly evacuate to shelter. For resolving these problems, it is needed of a service to inform quickly information which citizens want to know immediately after the earthquake. So, we have developed the customized information service model, the earthquake safety service which help citizens to escape safely using an earthquake shaking alert device. In this paper, we will introduce this model and present the future direction of R&D and strategic plans for technology dissemination and improvement of practicality through user demand survey.

A Study of Hypocentral Depth of Pohang Earthquake (포항 지진의 진원 깊이 연구)

  • Chung, Tae Woong;Lee, Youngmin;Iqbal, Muhammad Zafar;Jeong, Jina
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • 2017 Pohang earthquake (M 5.4) was more disastrous than 2016 Gyeongju earthquake (M 5.8), partly because of its shallow focal depth. However, precise focal depth of Pohang earthquake is still controversial. Close crustal model showed 6 ~ 11.5 km in relocation depth, whereas other models showed almost surface range. Geothermal study indicated temperature of $300^{\circ}C$ at depth of 7.5 km. Related with observations of seismogenic layer, the focal depth of Pohang earthquake seems to be 7 km depth as obtained by close model.