• 제목/요약/키워드: 20 um Thick Layer

검색결과 6건 처리시간 0.023초

Silver Paste 를 이용한 Solar Cell 은 전극 제조 (Synthesis of Top Connector for Solar Cells by Using Silver Paste)

  • 김영규;정태의;오동훈;김남수;홍성엽
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1837-1842
    • /
    • 2010
  • 화석에너지의 고갈로 인한 대체 에너지 연구는 최근 수십 년 동안 계속 행해지고 있다. 원자력 에너지와 비교해서 낮은 전기발생 효율에도 불구하고, 환경친화적이며 태양이라는 영구성으로 태양에너지는 주목 받고 있다. 본 논문에서는 태양전지의 효율에 가장 영향을 미치는 인자로 햇빛 입사각의 변화와 Top Connector 형상이라 가정하고 MATLAB 과 MathCAD 를 이용하여 모사하였다. 실험모사 결과 상용화 제품인 500um 선폭, 5um 높이 Top Connector 형상과 비교하여, 최고 10%의 태양전지 효율증가는 Top Connector 후막 두께가 25~50 um, 선폭 두께가 50~100um 영역에서 찾을 수 있었다. 10 만 cps 의 점도를 갖는 은페이스를 500um 의 MDDW (Micro-Dispensing Deposition Writing) 직접분사 노즐을 이용하여 성공적으로 25 um 후막을 형성하였다.

콘포멀 스프레이 코팅으로 형성한 EMI 차단막의 차폐효과 개선 (Improvement for Shielding Effectiveness of EMI Shield Layers using Conformal Spray Coating Scheme)

  • 허정;이원희
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.107-112
    • /
    • 2018
  • 콘포멀 스프레이 코팅으로 형성한 EMI 차단막으로 차폐효과(SE)를 얼마나 개선할 수 있는지 연구하였다. 차단막을 형성하는데 사용한 재료는 도체 분말을 아크릴계 바인더에 혼합한 금속-레진 복합재료이며, 금속분말로는 은(Ag)과 니켈(Ni)을 비교하였다. 재료의 점도는 400 cPs와 100 cPs에서 차폐성능을 비교하였다. 차단막의 두께는, 은의 경우 20 um에서 50 um, 니켈의 경우 60 um에서 120 um로 만들어 비교하였다. 차폐효과의 측정은 동축형 표준 측정기를 이용하여 ASTM D4935 방법으로 수행하였다. 니켈 시료보다 은 시료의 차폐효과가 우수했다. 차폐효과는 차단막 두께와 비례해 증가하지만 35 um 이상에서 더 이상 증가하지 않는다는 사실도 관찰하였다. 가장 차폐효과가 좋은 경우는 35 um 두께 은 시료 차단막으로, 63 dB의 차폐효과가 측정되었다.

후막 SmBCO/IBAD-MgO 초전도 박막선재의 제조 (Fabrication of Thick SmBCO/IBAD-MgO coated conductor)

  • 이정훈;강득균;하홍수;고락길;오상수;김호경;양주생;정승욱;문승현;염도준;김철진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.9-9
    • /
    • 2009
  • Coated conductor is required to have good critical current property for high efficiency of electric power applications. Until now, long coated conductor does not show high Jc over 3 MA/$cm^2$ in thick superconducting layer because of texture degradation by thick superconducting layer. In this study, in order to overcome this issue, thicker superconducting layer was deposited with optimized conditions to reduce the degradation of critical current density. SmBCO superconducting coated conductor was deposited with 1~3 um of thickness at $750\sim850^{\circ}C$ under 15~20 mTorr of oxygen partial pressure using batch type EDDC( evaporation using drum in dual chamber). The buffered substrate for superconducting layer deposition was used IBAD-MgO template with the architecture of $LaMnO_3/MgO/Y_2O_3/Al_2O_3$/Hastelloy. After fabrication of coated conductor, critical current was measured by 4-prove method under self-magnetic field and 77K. In addition, surface morphology and texture were analyzed by SEM and XRD, respectively. 3 um thick SmBCO coated conductor shows highest $I_C$ values of 638A/cm-w in 1 m long in the world.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동 (Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al)

  • 차태민;신병현;황명원;김도형;정원섭
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

파동형 Nd:YAG 레이저조사가 인체 치은조직에 미치는 영향 (Effect of a Pulsed Nd:YAG laser irradiation on human gingival tissues)

  • 강경동;김천석;김형수;김현섭;김병옥;한경윤
    • Journal of Periodontal and Implant Science
    • /
    • 제26권4호
    • /
    • pp.989-1002
    • /
    • 1996
  • The purpose of this study was to determine the effect of a pulsed Nd:YAG laser irradiation on human gingival tissues. The patients, who were planned to be treated by clinical crown lengthening procedure and gingivectomy, were selected. All the patients received oral hygiene instruction, scaling and root planing at preoperation. The crest of gingival tissue on upper and lower anterior teeth was irradiated by a pulsed Nd:YAG laser(El. EN. EN060, Italy) with a fiber optic of 300 m in contact mode for 20 seconds. Gingival tissues were divided into 4 groups according to the laser power of 1.0W(10Hz, 100mJ), 2.0W(20Hz, 100mJ), 3.0W(30Hz, 100mJ) and 4.0W(40Hz, 100mJ). Immediately after the laser irradiation, the specimens were excised, fixed 10% neutral formalin, sectioned $4-6{\mu}m$ thick, stained by Hematoxylin-Eosin and Periodic Acid Schiff stain and observed under light microscope. The removed tissue depth and the coagulated layer depth due to a laser irradiation by a laser irradiation were measured on the microphotographs. The difference of measurements according to the different laser power was statistical1y analyzed by Kruskal Wallis Test with SAS program. The results were as follows : 1. In histologic findings of irradiated gingival tissues; a. In the irradiated gingival specimen with 1.0W laser power, some vesicles were observed in limited superficial layer of gingival epithelium. b. In the irradiated gingival specimen with 2.0W and 3.0W laser power, the epithelium was almost removed except for the traces of viable basal cell remnants at ret peg, and coagulation necrosis related with the thermal effect of laser was noted. c. In the irradiated gingival specimen with 4.0W laser power, complete removal of epithelium, partial removal of underlying connective tissue, and the coagulation necrosis of subjacent gingival tissue were shown. 2. The removed tissue depth was deeper in the irradiated specimens with higher power. There was a statistical significance in the difference of removed tissue depth between 1.0W group ($44.54{\pm}6.99um$) and 3.0W group ($99.75{\pm}6.64{\mu}m$), and between 1.0W group($44.54{\pm}6.99{\mu}m$) and 4.0W group($111.36{\pm}4.50{\mu}m$), and between 2.0W group($98.01{\pm}4.53{\mu}m$) and 4.0W group($111.36{\pm}4.50{\mu}m$)(P<0.05). 3. The coagulated layer depth was deeper in the irradiated specimens with higher power. There was a statistical significance in the difference of coagulated layer depth between 1.0W group($31.82{\pm}8.99{\mu}m$) and 3.0W group($55.99{\pm}20.94{\mu}m$), and between 1.0W group($31.82{\pm}8.99{\mu}m$) and 4.0W group($83.68{\pm}10.34{\mu}m$)(P<0.05). From this study, the results demonstrated that the effects of a pulsed Nd:YAG laser irradiation on gingival tissues seemed to depend on the laser power and that the irradiation with high power could be harmful to adjacent healthy tissue.

  • PDF