• Title/Summary/Keyword: 20(S)-protopanaxatriol

Search Result 26, Processing Time 0.027 seconds

Analysis of Ginsenosides of White and Red Ginseng Concentrates (백삼 및 홍삼 농축액의 사포닌 분석)

  • Ko, Sung-Kwon;Lee, Chung-Ryul;Choi, Yong-Eui;Im, Byung-Ok;Sung, Jong-Hwan;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.536-539
    • /
    • 2003
  • Commercial white and red ginseng concentrates were analysed for total ginsenoside contents, and compositions of ginsenosides $Rb_1,\;Rb_2,\;Rc,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(S)\;Rh_1,\;and\;20(R)\;Rh_1$. The content of crude saponin and total ginsenosides of white ginseng concentrates (WGC) were about 2-3 times higher than those of red ginseng concentrates (RGC). HPLC showed that each ginsenoside content was higher in WGC, with those of $Rb_1,\;Rg_1,\;and\;Rb_2$ being over three times higher than that of RGC. 20(S)- and 20(R)-ginsenoside $Rg_3$, specific artifacts found only in red ginseng, were detected both in WGC and RGC by HPLC. differences in the contents of these specific ginsenosides between WGC and RGC were not significant. The contents of 20(S)-ginsenoside $Rg_1$, determined by HPLC were 0.40 and 0.53 in WGC, whereas 0.48% and 0.47%, and those of 20(R)-ginsenoside $Rg_3$, were 0.14 and 0.22% in WGC, and 0.10 and 0.11% in RGC using the methods of shibata and food Code, respectively.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials

  • Kim, Il-Woung;Sun, Won Suk;Yun, Bong-Sik;Kim, Na-Ri;Min, Dongsun;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.124-134
    • /
    • 2013
  • The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.

Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model

  • Sung-Won Kim;Byung-Cheol Han;Seung-Ho So;Chang-Kyun Han;Gyo In;Chae-Kyu Park;Sun Hee Hyun
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.74-80
    • /
    • 2023
  • Background: Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods: Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion: After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim;Seon Been Bak;Won-Yung Lee;Su Jin Bae;Eun Hye Lee;Ju-Hye Yang;Kwang Youn Kim;Chang Hyun Song;Sang Chan Kim;Un-Jung Yun;Kwang Il Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

Effects of Neutral Dammarane Saponin from Panax ginseng on the in vitro Function of Polymorphonuclear Leukocytes (인삼의 중성 Dammarane계 사포닌의 다형핵 백혈구 기능에 미치는 영향)

  • Bridges Raymond B.;Park Ki Hyun;Han Byung Hoon;Han Yong Nam;Chung Soo Il
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.115-121
    • /
    • 1988
  • Although Saponin A from Panax ginseng has previously been shown to inhibit carageenin induced edema. a paucity of information exists on the effects of components from ginseng on the cellular inflammatory response. specifically polymorphonuclear leukocyte (PMNL) function. The purpose of this study was 10 determine the effects of isolated neutral dammarane saponins from ginseng (i.e..glycosidic derivatives of 20(S)-protopanaxadiol [ginsenoside $Rb_1,\;Rb_2$ and Rc] and 20(S)-protopanaxatriol [ginsenosides Re and $Rg_1$]) on in vivo PMNL function and to compare their effects with those produced by a steroidal anti-inflammatory agent (dexamethasone) and commercially available saponin. Dexamethasone. the ginsenosides and saponin were all shown to he potent inhibitors of PMNL chemotaxis using the $^{51}Cr$ assay with $5{\times}10^{-8}M$ f-met-leu-phe [FMLP] as the chemoattractant. Inhibition or PMNL chemotaxis by dexamethasone. the ginsenosides and saponin were all shown to be both time-and dose-dependent and these agents did not affect cellular viability at the concentrations tested Saponin and the ginsenosides were more potent inhibitors of chemotaxis than was dexamethasone. while oxidant generation (as measured by the luminol-enhaneed chemil-uminescence of PMNL using FMNL $[10^{-6}]$ as the stimulus) was inhibited by dexamethasone. the ginsenosides $(Rb_1\;Rb_2\;Rc\;Re\;and\;Rg_1)$ and saponin at a concentration of 1 ${\mu}M$ had no significant effect on PMNL chemiluminescence. Thus. the neutral dammarane saponins are potentially important modulators or PMNL function and their inhibitory effects may he differentiated from those of the Steroidal anti-inflammatory agents.

  • PDF