• Title/Summary/Keyword: 2.4GHz Band Applications

Search Result 178, Processing Time 0.032 seconds

Design of Dual-Band MIMO Antenna with High Isolation for WLAN Mobile Terminal

  • Lee, Jung-Nam;Lee, Kwang-Chun;Park, Nam-Hoon;Park, Jong-Kweon
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.177-187
    • /
    • 2013
  • In this paper, we propose a dual-band multiple-input multiple-output (MIMO) antenna with high isolation for WLAN applications (2.45 GHz and 5.2 GHz). The proposed antenna is composed of a mobile communication terminal board, eight radiators, a coaxial feed line, and slots for isolation. The measured -10 dB impedance bandwidths are 10.1% (2.35 GHz to 2.6 GHz) and 3.85% (5.1 GHz to 5.3 GHz) at each frequency band. The proposed four-element MIMO antenna has an isolation of better than 35 dB at 2.45 GHz and 45 dB at 5.2 GHz between each element. The antenna gain is 3.2 dBi at 2.45 GHz and 4.2 dBi at 5.2 GHz.

Compact Dual-Band Half-Ring-Shaped Bent Slot Antenna for WLAN and WiMAX Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2017
  • A compact dual-band half-ring-shaped (HRS) bent slot antenna fed by a coplanar waveguide for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is presented. The antenna consists of two HRS slots with different lengths and widths. The two HRS slots are connected through an arc-shaped slit, and the upper HRS slot is bent in order to reduce the size of the antenna. The optimized dual-band HRS bent slot antenna operating in the 2.45 GHz WLAN and 3.5 GHz WiMAX bands is fabricated on an FR4 substrate with dimensions of 30 mm by 30 mm. The slot length of the proposed dual-band slot antenna is reduced by 35%, compared to a conventional dual-band rectangular slot antenna. Experimental results show that the proposed antenna operates in the frequency bands of 2.40-2.49 GHz and 3.39-3.72 GHz for a voltage standing wave ratio of less than 2, and measured gain is larger than 1.4 dBi in the two bands.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

Wideband Monopole Antenna for Multiband Mobile Communication Applications

  • Rhyu, Han-Phil;Lee, Hyun-Kyu;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.71-75
    • /
    • 2008
  • A folded monopole antenna is proposed for mobile communication applications. The proposed antenna covers CDMA and GSM at low frequency band, and it has a wide bandwidth (6.85 GHz) at high frequency band to cover GPS, DCS, USPCS, UHfS, WLAN (2.4, 5.2, 5.8 GHz), and the future application of IEEE 802.16e mobile WiMAX.

  • PDF

Fabrication and Design of a SiGe MMIC Differential VCO for C-band WLAN Applications (C-band WLAN용 SiGe MMIC 차동형 전압제어발진기 설계 및 제작)

  • 박민기;고호정;채규성;김창우
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.767-770
    • /
    • 2003
  • A SiGe HBT MMIC differential VCO has been developed for C-band wireless LAN applications. The VCO produces -6.4 dBm output power at 4.75 GHz. The VCO exhibits a 490 MHz tuning range with control voltage from 0.5 V to 2.5 V. The phase noise of the VCO exhibits -106.5 dBc/Hz at 1 MHz offset from the 4.75 GHz carrier. The total current consumption of the VCO is 10 mA at a supply voltage of 3 V.

  • PDF

Design and Fabrication of a Broadband RF Module for 2.4GHz Band Applications (2.4GHz 대역에서의 응용을 위한 광대역 RF모듈 설계 및 제작)

  • Yang Doo-Yeong;Kang Bong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a broadband RF module is designed and tested for 2.4GHz band applications. The RF module is composed of a low noise amplifier (LNA) with a three stage amplifier, a single ended gate mixer, matching circuits, a hairpin line band pass filter and a Chebyshev low pass filter to convert the radio frequency (RF) into the intermediate frequency (IF). The LNA has a high gain and stability, and the single ended gate mixer has a high conversion gain and wide dynamic range. In the analysis of the broadband RF module, the composite harmonic balance technique is used to analyze the operating characteristics of an RF module circuit. The RF module has a 55.2dB conversion gain with a 1.54dB low noise figure, $-120{\sim}-60dBm$ wide RF power dynamic range, -60dBm low harmonic spectrum and a good isolation factor among the RF, IF, and local oscillator (LO) ports.

  • PDF

Series-Fed Dipole Pair Antenna with WLAN Band Rejection Characteristic (WLAN 대역 저지 특성을 가지는 직렬 급전 다이폴 쌍 안테나)

  • Yeo, Junho;Hong, Jae Pyo;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1982-1987
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the rejection band characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

A Study on Design Method of Band Rejection for Broadband Series-fed Dipole Pair Antenna (광대역 직렬 급전 다이폴 쌍 안테나의 대역 저지 설계 방법 연구)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the band rejection characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

  • PDF

Design and Analysis of Dual Band I/Q Modulator For Wireless LAN (무선랜용 이중대역 I/Q 모듈레이터의 설계 및 특성 해석)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • A dual band I/Q modulator which converts baseband input signals to 2.4GHz or 5GHz RF output has been proposed. The dual band I/Q modulator for 2.4GHz and 5GHz wireless LAN applications consists of $90^{\circ}$ phase shifter and wideband mixer. The I/Q modulator showed 15dB conversion loss at 2.4GHz and 16dB conversion loss at 5GHz. The sideband suppression is about 15dBc at 2.4GHz and 16dBc at 5GHz. Measured data shows 8.5% EVM at 2.4GHz, and 10% EVM at 5GHz for QPSK with symbol rate of 11Mbps. A carrier rejection is about 40dBc at 2.4GHz/5GHz band, and the I/Q modulator satisfied the output wireless LAN spectrum mask with baseband input signal.