• Title/Summary/Keyword: 2.4/5GHz Dual Band

Search Result 158, Processing Time 0.029 seconds

Design of MIMO Antenna With High Isolation by Using an Isolation Aid for WLAN (아이솔레이션 에이드를 사용하여 높은 격리도를 가지는 무선랜용 MIMO 안테나 설계)

  • Son, Ho-Cheol;Kim, Su-Hoon;Lee, Chang-Ju;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In this paper we design MIMO antenna with high isolation between antennas by using an isolation aid for WLAN. Two dual-band PIFAs which operates IEEE 802.11n are arranged symmetrically along the central axis of antenna frame and ground plane. By inserting an isolation aid between two PIFAs the isolation is improved maximum 5dB and 7dB for 2.4GHz band and 5GHz band respectively. Total efficiency is above 60%. ECC is below 0.1.

A New Dual Band Branch Line Hybrid Coupler with Arbitrary Power Division Ratio (임의의 분배비를 갖는 새로운 이중 대역 가지 선로 결합기)

  • Kim, Kwi-Soo;Gwon, Chil-Hyeun;Dorjsuren, Baatarkhuu;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.444-449
    • /
    • 2009
  • This paper presents the design of a dual band branch line hybrid coupler(BLHC) with different power division ratios at two bands. In the proposed design, transmission lines of the BLHC are transformed to $\pi$-type equivalent circuits which represent different impedances and $\lambda/4$ electrical length at two frequency bands. In order to verify the proposed method, a dual band coupler with different power division ratios is designed for 0.9 GHz and 2 GHz applications. The desired power division ratios are 1:1 and 1:3 at the two operating frequency bands. The measured results show excellent performance with an insertion loss of less than 0.33 dB, a return loss of less than -18.07 dB, and good isolation characteristics.

Design of X/Ku band Waveguide Diplexers with H-plane T-junction (자계면 T-접합 구조를 갖는 X/Ku 밴드 도파관 다이플렉서의 설계)

  • Eum, Jeong-Hee;Choi, Hak-Keun;Song, Choong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.33-39
    • /
    • 2013
  • In this paper, X/Ku band waveguide diplexers with H-plane T-junction for satellite communication systems is proposed and its characteristics is cinfirmed. Two frequency bands such as X(7.25 ~ 8.4 GHz) and Ku(12.25 ~ 14.5 GHz) can be separated by the proposed waveguide diplexers. A diplexers is normally including low pass filter, high pass filter and junction waveguide. To simplify the structure of the proposed diplexers, the proposed waveguide diplexers is using impedance matching technique on H-plane of the high pass filter without low pass filter. To use vertical and horizontal polarization, the proposed diplexers with orthomode transducer(OMT) characteristics is also designed. Therefore, it is confirmed that the proposed waveguide diplexers can be used as dual-band and dual-polarization diplexers for satellite communication feed systems.

Design of a Pot-Shaped Monopole Antenna with Dual Band Notched Characteristics for UWB Application

  • Mok, Kwang Yun;Rhee, Young Chul;Yoon, Joong Han
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • A compact planar microstrip-fed ultra-wideband (UWB) antenna with a dual band-notched for UWB application is presented and analyzed. By inserting a U-shaped slot and inverted U-shaped slot into the pot-shaped radiator, two notched bands are achieved. By optimizing the width and length of the U-shaped slots and inverted U-shaped slot, a desired bandwidth of voltage standing wave ratio (VSWR) less than 2.0 can be achieved, ranging from UWB bands with notched dual bands. The proposed antenna is fabricated on an inexpensive FR-4 substrate with overall dimensions of $28.0mm{\times}39.5mm$. The measured results confirm that the proposed antenna covers from 1.775 to over 13.075 GHz with two rejection bands of around 3.325-3.925 GHz and 5.3125-6.025 GHz. In addition, the proposed antenna showed good radiation characteristics and gains in the UWB bands.

A Study on Performance Improvement of Dual-Bandpass Filter for IEEE 802.l1a/b/g (IEEE 802.11a/b/g용 이중 대역통과 필터의 성능 개선에 관한 연구)

  • Jeon, Mi-Hwa;Kim, Eun-Mi;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.799-804
    • /
    • 2008
  • In the paper, a dual-bandpass filter for ship's wireless LAN has proposed, which was designed by using step stub in compliance with 2.4 GHz and 5.2 GHz band The dual-bandpass filter can be designed by adjusting the sizes of the step stub in compliance with the frequency bands of 2.4 GHz and 5.2 GHz, which has the improved performance compared with the existing dual-bandpass filter. Furthermore, dual-bandpass filter using step stub has better efficiency. The measured results for the fabricated dual-bandpass filters agreed well with the simulated ones, and hence it was confirmed that the proposed design method is valid.

Design of Broadband Hybrid Mixer using Dual-Gate FET (이중게이트 FET 를 이용한 광대역 하이브리드 믹서 설계)

  • Jin, Zhe-Jun;Lee, Kang-Ho;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.197-200
    • /
    • 2005
  • This paper presents the design of a broadband hybrid mixer using dual-gate FET topology with a low-pass filter which improves return loss of output to isolate RF and LO signal. The low-pass filter shows the isolation whose RF and LO signal is better than 40 dBc at 2 GHz and 5 GHz band. The dual-gate mixer which has been designed by using cascade topology operates when the lower FET is biased in linear region and the upper FET is in saturation. The input matching circuit has been designed to have conversion gain from 2 GHz to 6 GHz. The designed mixer with low-pass filter shows the conversion gain of better than 7 dB from 2 GHz to 6 GHz at a low LO power level of 0 dBm with the fixed IF frequency of 21.4 MHz.

  • PDF

Design of Balanced Dual-Band Bandpass Filter with Self-Feedback Structure

  • Chen, Xinwei;Han, Guorui;Ma, Runbo;Gao, Jiangrui;Zhang, Wenmei
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.475-477
    • /
    • 2009
  • A balanced dual-band bandpass filter based on ${\lambda}$/2 stepped-impedance resonators and open-loop resonators is proposed in this letter. By employing a type of self-feedback structure, an extra transmission zero is introduced near the common-mode resonance frequency, and the common-mode signal is suppressed. The measured results indicate that the filter can operate in 2.46 GHz and 5.6 GHz bands, and the insertion loss is 1.85 dB and 1.9 dB, respectively. Also, better common-mode suppression is achieved.

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.

Development of On-Board Dual-Band Antenna for Small Walkie-Talkie (소형 무전기를 위한 On-Board 이중대역 안테나 개발)

  • Park, Young-bae;Lee, Sang-suck;Lee, Young-hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.885-894
    • /
    • 2015
  • In this paper, it can be applied to a walkie-talkie, the RFID / USN 920 MHz band(917~923.5 MHz) and WiFi 2.4GHz band(2.4~2.483 5GHz) return loss is 10 dB over the band, on-board dual band with omni-directional radiation characteristics is proposed. The basic structure designed antenna is used meander monopole antenna. It was used as double stubs and tabs for antenna designs that meet the criteria proposed. The double stub and the tab affects the reactance of the antenna to form a common-mode and differential-mode in the stub to improve the antenna characteristics and return loss in the bandwidth, gain and radiation characteristics. The system size of walkie-talkie is $52{\times}77mm^2$, the size of the antenna is limited to $52{\times}15mm^2$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. For experimental results, the return loss is measured more than 10 dB, the maximum gain is measured 1.95 dB, the maximum bandwidth is measured 360 MHz, the radiation characteristic is measured omni-directional. By a walkie-talkie terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

A Study on the Design of Dual-Band Small Pacth Antenna using T-shaped Feeder and Spiral Structure (T자형 급전선과 스파이럴구조를 이용한 이중대역 소형패치 안테나 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • This paper proposes an antenna that is located outside the PCB substrate of an electronic product to enable wireless communication in the ISM band. The PCB designed the T-shaped OPEN-STUB power supply line to be miniaturized so that it does not interfere with parts or interfere with design. The characteristics of the antenna were confirmed in the 2.4GHz and 5.8GHz bands using a T-shaped stub feeder and a spiral structure. The size of the antenna is 5mm in width × 6.5mm in length, and the thickness of the PCB is 1.2T. As a result of measurement of the manufactured antenna, it was possible to obtain a return loss of -10dB or more at 2.4GHz and 5.8GHz. In the E-plane, the gain was -4.45 dBi, and in the H-plane, the gain was -1.05 dBi. Therefore, the proposed small antenna for wireless communication showed excellent performance.