• Title/Summary/Keyword: 2.25CrMo steel

Search Result 122, Processing Time 0.022 seconds

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header - (Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -)

  • Baek, Seung-Se;Lee, Dong-Hwan;Ha, Jeong-Su;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels (X20CrMoV12.1강의 열화에 따른 기계적특성 평가)

  • Kim, B.S.;Lee, S.H.;Kim, D.S.;Jung, N.G.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

A Study on the Evaluation of Material Degradation for 2.25Cr-1Mo Steel by Ultrasonic Measurements (초음파 계측에 의한 2.25Cr-1Mo강의 열화도 평가에 관한 연구)

  • 박은수;박익근;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The remaining life estimation for the aged component is very important because mechanical properties of the compo-nents are degraded with time of service exposure in high temperature etc. The destructive method is widely used for the estimation of material degradation, but it has a difficulty in preparing specimens from in-service industrial facilities. In order to evaluate the feasibility of ultrasonic evaluation method for properties of high temperature materials, 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at 63$0^{\circ}C$ were evaluated by ultra-sonic measurements investigating the change of velocities and attenuation coefficient. In this results, attenuation coefficient was found to be sensitive to material degradation mainly attributed to the change of grain size and the precipitation of impurities in grain boundaries, but velocity was not for all specimens.

  • PDF

A Study on Degradation Estimation of 2.25Cr-1Mo Steel Using Ultrasonic Lamb Wave (램파를 이용한 2.25Cr-lMo재의 열화평가에 관한 연구)

  • 이상용;박익근;박은수;권숙인;조윤호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.324-329
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation of thermally damaged 2.25 Cr-lMo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ratio and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

A Study on the Mechanical Properties Change by Stress Aging of 2.25Cr-1Mo Steel (2.25Cr-1Mo 강의 응력 시효에 의한 기계적 특성 변화에 대한 연구)

  • Yang, Hyun-Tae;Kim, Sang-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.517-522
    • /
    • 2001
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature and stress for 250 hours. Original, aged artificially material were tested to obtain the hardness and impact absorbed energy. Hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

  • PDF

A Study on the Mechanical Strength Change by Thermal Aging of 2.25Cr-1Mo Steel (발전설비용 2.25Cr-1Mo 강의 시효에 의한 기계적 강도 특성 변화에 대한 연구)

  • Yang, Hyeon-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1771-1778
    • /
    • 2000
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature for the extended periods. Original, aged artificiall y and used material were tested to obtain the tensile strength, hardness and impact absorbed energy. Tensile strength, hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

Nondestructive Evaluation for Degraded 2.25Cr-1Mo Steel though Surface SH-wave (표면SH파를 이용한 2.25Cr-1Mo강의 열화.손상 평가)

  • Kim, Hyun-Mook;Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kim, Chung-Soek
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.280-285
    • /
    • 2000
  • It is very important to evaluate the surface or subsurface microstructure because of their influences on mechanical properties of materials. Surface SH-wave which is horizontally polarized shear wave traveling along near surface and subsurface layer is an attractive technique for material evaluation. The destructive method is widely used for the estimation of material degradation but it has a great difficulty in preparing specimens from in-service industrial facilities. In this study, nondestructive evaluation for degraded structural materials used at high temperature though surface SH-wave method is discussed. 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $650^{\circ}$ were evaluated though ultrasonic nondestructive evaluation techniques investigating the change of sound velocity, attenuation coefficient and amplitude spectra. In addition, it has verified experimentally the frequency-dependence of attenuation coefficient though wavelet analysis method.

  • PDF

Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel (Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동)

  • Kim, Hong-Ki;Na, Hye-Sung;Lee, Sang-Hoon;Kang, Chung-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.