• Title/Summary/Keyword: 2.25Cr-1Mo

Search Result 127, Processing Time 0.028 seconds

Therapeutic Results of Concurrent Chemoradiation in Locally Advanced Uterine Cervical Cancer (국소적으로 진행된 자궁경부암에서 방사선과 Cisplatin의 동시병합요법의 치료결과)

  • Kang, Seung-Hee;Suh, Hyun-Suk;Yang, Kwang-Mo;Lee, Eung-Soo;Park, Sung-Kwon
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.55-61
    • /
    • 1995
  • Purpose : Despite a development of therapeutic machines and advance in modern radiation therapy techniques, locally advanced cervical carcinoma has shown high rate of local failure and poor survival rate, Combination of chemotherapy and radiotherapy demonstrated benefit in improving local control and possibly the overall survival. Our study was performed to evaluate effect of concurrent chemoradiation on locally advanced uterine cervical cancer. Methods and Materials : Twenty six patients with locally advanced stage(FIGO stage IIB with ${\geq}5cm$ in diameter, III, IVA) were treated with combination of radiation therapy and concurrent cisplatinum between May of 1988 and September of 1993 at our hospital. Radiation therapy consisted of external irradiaton and 1-2 sessions of intracavitary irradiation. Cisplatinum was administered in bolus injection of 25mg/$m^2$ at weekly intervals during the course of external radiation therapy. Results : Of the 26 Patients, twenty-five patients were evaluable for estimation of response. Median follow-up period was 25 months with ranges from 3 to 73 months. Stage IIB, III, and IVA were 16, 5, 4 patients, respectively, Twenty patients were squamous cell carcinoma. Response was noted in all 25 patients: complete response(CR) in 17/25($68\%$), Partial response(PR) in 8/25($32\%$). Of the 24 patients except one who died of sepsis at 3 months follow-up, seventeen patients($70.8\%$) maintained local control in the pelvis: 16/17($94.1\%$) in CR, 1/17($14.3\%$) in PR. Fourteen of the 17 patients with CR are alive disease free on the completion of follow-up. Median survival is 28 months for CR and 15 months for PR. Analysis of 5-year survival by stage shows 11/16($59.8\%$) in IIB, 3/5($60.0\%$) in III, and 1/4($25.0\%$) in IVA. Overall 5-year survival rate was $55.2\%$. Ten patients recurred: 4 at locoregional, 3 in distant metastasis and 3 with locoregional and distant site. Toxicity by addition of cisplatinum was not excessive. Conclusion : Although the result of this study was obtained from small number of patients, it is rather encouraging in view of markedly improved response rate compared with the results of historical group.

  • PDF

COMPARISON OF THE BOND STRENGTH OF CERAMICS FUSED TO TITANIUM AND Ni-Cr ALLOY (티타늄과 니켈-크롬 합금의 도재결합강도 비교)

  • Park Sae-Young;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.89-98
    • /
    • 2003
  • Titanium requires special ceramic system for veneering. Low fusing dental ceramics with coefficients of thermal expansion matching that of titanium have been developed. The purpose of this study was determine the bond strengths between cast and noncast pure titanium and two commercial titanium porcelains, and to compare the results with a conventional nickel-chromium alloy-ceramic system. The bond strengths were determined using a 3-point flexure test. Three-point flexure specimens $25{\times}3{\times}0.5mm$ were prepared After removal of ${\alpha}-case$ layer, they were veneered with $8{\times}3{\times}1mm$ of ceramics at the center of the bar. Specimens were tested in a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The bond strengths between pure titanium and two commercial porcelains exceeded th lower limit of the bonding strength value in ISO 9693(25MPa). 2. There was no significant difference between cast and noncast titanium-porcelain bonds. 3. There was no significant difference between two commercial titanium porcelains. 4. The bond strengths of the titanium-porcelain systems ranged from 73% to 79% of that of the Ni-Cr-conventional porcelain system.

Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen (미소시험편을 이용한 고온 크리프 특성 평가법 개발)

  • Yu, Hyo-Sun;Baek, Seung-Se;Lee, Song-In;Ha, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.

Corrosion of Fe-2.25%Cr-1%Mo Steels at $600-800^{\circ}C$ in $N_2/H_2O/H_2S$ atmospheres (Fe-2%Mn-0.5%Si강판의 $600-800^{\circ}C$, $N_2/H_2O/H_2S$분위기에서의 고온부식)

  • Kim, Min-Jeong;Bong, Seong-Jun;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • 저비용, 고효율, 안정적 수급이 가능한 전력 에너지원이 요구되면서 석탄이 새로운 에너지원으로 급부상하게 됨에 따라 차세대 친환경 석탄화력 발전기술인 IGCC (Integrated Gasification Combined Cycle) 발전 시스템 의 개발이 필요하게 되었다. 석탄가스화 공정(IGCC: integrated coal gasification combined cycle)은 석탄을 가스화한 후 이를 이용하여 복합발전소를 운전하는 발전기술로서 석탄을 고온, 고압아래에서 수소와 일산화탄소를 주성분으로 한 합성가스로 전환한 뒤 합성가스 중에 포함 된 분진과 황 화합물 등 유해물질을 제거하고 천연가스와 유사한 수준으로 정제하여 전기를 생산하는 친환경 발전 기술이다.

  • PDF

Study on the Improvement of Weld-joint Reliability in Waterwall Tubes of the Ultra Supercritical Coal Fired Boiler (석탄화력발전용 초초임계압(USC) 보일러 수냉벽 튜브 용접 신뢰성 향상에 대한 연구)

  • Ahn, Jong-Seok;Lee, Seung-Hyun;Cho, Sang-Kie;Lee, Gil-Jae;Lee, Chang-Hee;Moon, Seung-Jae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The low alloy-steel material(1.0Cr-0.5Mo, SA213T12), which has widely been used for the waterwall tube in the conventional power plant, do not have enough creep rupture strength for waterwall tubes of the Ultra-supercritical(USC) boilers. According to this reason, the high-strength low alloy-steel(2.25Cr-1.0Mo, SA213T22) has newly been adopted for the waterwall tube in the USC boilers. This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process has not been conducted strictly.(preheating, P.W.H.T and so forth). Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

A Study on the Correlations Between Ultrasonic Parameters and Fracture Toughness (초음파 파라미터와 파괴인성치의 상관관계에 관한 연구)

  • Kim Jeong-Pyo;Park Jae-Sil;Bae Bong-Kook;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.232-238
    • /
    • 2005
  • In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Ultrasonic tests were performed to get the correlation with fracture toughness. The modified theoretical Vary's equation, considering nonlinear response due to material degradation, was proposed for the correlations between ultrasonic parameters and fracture toughness. Experimental results indicate that ultrasonic attenuation coefficient, velocity and nonlinear parameters produce the correlations with fracture toughness and yield strength.

Impact Toughness and Fracture Behavior in Non-Heat Treating Steels Containing Bainite (베이나이트 함유 비조질강의 충격인성 및 파괴거동)

  • Cho, Ki-Sub;Kwon, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Impact toughness and fracture behavior were studied in five kinds of non-heat treating steels containing bainite; standard(0.25C-1.5Mn-0.5Cr-0.2Mo-0.15V), high V(0.3V), Ni(0.5Mn-2Ni), W(0.4W instead of Mo), and high C-Ni(0.35C-0.5Mn-2Ni) steels. The good hardness and impact toughness balance was exhibited in the $1100^{\circ}C$-rolled condition, while the impact toughness was deteriorated due to coarse grained microstructure in the $1200^{\circ}C$-rolled condition. The impact toughness decreased with increasing the hardness in all steels studied. The fracture behavior was also basically identical, that is, the fracture area was divided into 3 zones; shear and fibrous zone, fracture transition zone with ductile dimples and cleavage cracks, where the cracks initiate and grow to critical size, unstable cleavage fracture propagation zone. The energy absorbed for the critical crack formation through the plastic deformation inside the plastic zone in front of the notch root contributed to a mostly significant portion of the total impact energy.