• 제목/요약/키워드: 2.2.15 cells

검색결과 3,351건 처리시간 0.032초

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells

  • Choi, Eun-Jeong;Ahn, Woong-Shick
    • Nutrition Research and Practice
    • /
    • 제2권4호
    • /
    • pp.322-325
    • /
    • 2008
  • The aim of present study was to investigate the effects of kaempferol on cellular proliferation and cell cycle arrest and explore the mechanism for these effects in human breast carcinoma MDA-MB-453 cells. Cells were treated with kaempferol at various concentrations (ranging from 1 to $200\;{\mu}M$) for 24 and 48 hrs. Kaempferol significantly inhibited cancer cell growth in cells exposed to 50 and $10\;{\mu}M$ of kaempferol and incubated for 24 and 48 hrs, respectively. Exposure to kaempferol resulted in cell cycle arrest at the G2/M phase. Of the G2/M-phase related proteins, kaempferol down-regulated CDK1 and cyclin A and B in cells exposed to kaempferol. In addition, small DNA fragments at the sub-G0 phase were increased by up to 23.12 and 31.90% at 10 and $50\;{\mu}M$ incubated for 24 and 48 hrs, respectively. The kaempferol-induced apoptosis was associated with the up-regulation of p53. In addition, the phosphorylation of p53 at the Ser-15 residue was observed with kaempferol. Kaempferol inhibits cell proliferation by disrupting the cell cycle, which is strongly associated with the induction of arrest at G2/M phase and may induce apoptosis via p53 phosphorylation in human breast carcinoma MDA-MB-453 cells.

HIT-T15 세포에서 돼지감자 추출물의 항당뇨 효과 (Helianthus tuberosus Extract Has Anti-Diabetes Effects in HIT-T15 Cells)

  • 김정란;배초롱;차연수
    • 한국식품영양과학회지
    • /
    • 제39권1호
    • /
    • pp.31-35
    • /
    • 2010
  • 본 실험에서는 hamster $\beta$-cell인 HIT-T15 cell을 이용하여 돼지감자추출물의 생리활성 및 기능을 검증하고자 하였다. 돼지감자추출물을 첨가한 NC(0 ${\muL/mL$), HT2(1.1 ${\muL/mL$), HT3(1.5 ${\muL/mL$)군과 inulin을 첨가한 NC(0 ${\muL/mL$), IN2(1.8 ${\muL/mL$), IN3(2.5 ${\muL/mL$)군으로 나누어 실험하였다. 세포 viability 측정한 결과 시료를 첨가하지 않은 군을 100%로 보았을 때 돼지감자추출물을 첨가한 HT3(1.5 ${\muL/mL$)군과 inulin을 첨가한 IN2(1.8 ${\muL/mL$), IN3(2.5 ${\muL/mL$) 군에서 세포생존율이 유의적으로 증가하였다(p<0.05). 시료처리 후 췌장 $\beta$-세포 파괴를 유도하지 않고 HIT-T15 cell의 cell culture supernatant를 이용하여 cytotoxicity를 측정한 결과 시료를 첨가하지 않은 NC(0${\muL/mL$)군에 비해 모든 군에서 cytotoxicity가 낮게 나타났다. Alloxan(4 mM)으로 $\beta$-세포 파괴를 유도하여 HIT-T15 cell에서 세포보호 효과를 측정한 결과 시료를 첨가하지 않은 NC(0 ${\muL/mL$)군에 비해 돼지감자추출물을 첨가한 HT2(1.1 ${\muL/mL$), HT3(1.5 ${\muL/mL$)군에서 세포생존율이 유의적으로 증가하였다(p<0.05). 또한 췌장 $\beta$-세포 파괴를 유도하여 HIT-T15 cell이 분비한 인슐린 분비능 및 세포 내 $NAD^+$/NADH 함량을 측정한 결과 시료를 첨가하지 않은 NC(0 ${\muL/mL$)군에 비해 돼지감자추출물을 첨가한 HT3(1.5 ${\muL/mL$)군에서 인슐린 분비량과 $NAD^+$/NADH 함량이 유의적으로 증가하였다(p<0.05). 이상의 연구 결과 돼지감자추출물은 HIT-T15 cell의 생존율을 높이고, 세포보호 효과를 가짐으로써 인슐린 분비능 정상화 및 $NAD^+$ 함량을 증가시켜 혈당 조절 및 당뇨에 긍정적 효과가 있을 것으로 사료된다.

Inhibition of Nitric Oxide Production, iNOS and COX-2 Expression of Ergosterol Derivatives from Phellinus pini

  • Hong, Yun-Jung;Jang, A-Reum;Jang, Hyun-Jin;Yang, Ki-Sook
    • Natural Product Sciences
    • /
    • 제18권3호
    • /
    • pp.147-152
    • /
    • 2012
  • Ergosta-4,6,8(14),22-tetraen-3-one (1), ergosta-7,24(28)-dien-3-ol (2), and 5,8-epidioxyergosta-6,22-dien-3-ol(3) were isolated from the fruit body of Phellinus pini. Their structures were based on spectroscopic methods including IR, MS, and NMR (1D and 2D). These compounds were screened for their ability to inhibit nitric oxide (NO) production in LPS-activated RAW 264.7 cells. Compounds 1, 2, and 3 reduced NO production in the assay with $IC_50$ values of 29.7 ${\mu}M$ (1), 15.1 ${\mu}M$ (2), and 18.4 ${\mu}M$ (3) respectively. They also suppressed the expression of protein and m-RNA of iNOS and COX-2 in a dose dependent manner by western blot analysis and RT-PCR experiment in LPS-activated microglial cells.

SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험 (Development and Performance Test of SOFC Co-generation System for RPG)

  • 이태희;최진혁;박태성;최호윤;유영성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

Glycyrrhiza uralensis (licorice) extracts increase cell proliferation and bone marker enzyme alkaline phosphatase activity in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제51권4호
    • /
    • pp.316-322
    • /
    • 2018
  • Purpose: The Glycyrrhiza uralensis species (Leguminosae) as a medicinal biocompound, and one of its root components, isoliquritigenin (ISL), which is a flavonoid, has been reported to have anti-tumor activity in vitro and in vivo. However, its function in bone formation has not been studied yet. In this study, we tested the effect of Glycyrrhiza uralensis (ErLR) and baked Glycyrrhiza uralensis (EdLR) extracts on osteoblast proliferation, alkaline phosphatase (ALP) activity, and bone-related gene expression in osteoblastic MC3T3-E1 cells. Methods: MC3T3-E1 cells were cultured in various levels of ErLR (0, 5, 10, 15, $20{\mu}g/mL$), EdLR (0, 5, 10, 15, $20{\mu}g/mL$), or ISL (0, 5, 10, 15, $20{\mu}M$) in time sequences (1, 5, and 20 days). Also, isoliquritigenin (ISL) was tested for comparison to those two biocompound extracts. Results: MTT assay results showed that all three compounds (ErLR, EdLR, and ISL) increased osteoblastic-cell proliferation in a concentration-dependent manner for one day. In addition, both ErLR and EdLR compounds elevated the osteoblast proliferation for 5 or 20 days. Extracellular ALP activity was also increased as ErLR, EdLR, and ISL concentration increased at 20 days, which implies the positive effect of Glycyrrhiza species on osteoblast mineralization. The bone-related marker mRNAs were upregulated in the ErLR-treated osteoblastic MC3T3-E1 cells for 20 days. Bone-specific transcription factor Runx2 gene expression was also elevated in the ErLR- and EdLR-treated osteoblastic MC3T3-E1 cells for 20 days. Conclusion: These results demonstrated that Glycyrrhiza uralensis extracts may be useful for preventing osteoporosis by increasing cell proliferation, ALP activity, and bone-marker gene expression in osteoblastic cells.

20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway

  • Zhang, Hong;Xu, Hua-Li;Fu, Wen-Wen;Xin, Ying;Li, Mao-Wei;Wang, Shuai-Jun;Yu, Xiao-Feng;Sui, Da-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7919-7923
    • /
    • 2014
  • 20(S)-Protopanaxadiol (PPD), a ginsenoside isolated from Pananx quinquefolium L., has been shown to inhibit growth and proliferation in several cancer cell lines. The aim of this study was to evaluate its anticancer activity in human breast cancer cells. MCF-7 cells were incubated with different concentrations of 20(S)-PPD and cytotoxicity was evaluated by MTT assay. Occurrence of apoptosis was detected by DAPI and Annexin V-FITC/PI double staining. Mitochondrial membrane potential was measured with Rhodamine 123. The Bcl-2 and Bax expression were determined by Western blot analysis. Caspase activity was measured by colorimetric assay. 20(S)-PPD dose-dependently inhibited cell proliferation in MCF-7 cells, with an $IC_{50}$ value of $33.3{\mu}M$ at 24h. MCF-7 cells treated with 20(S)-PPD presented typical apoptosis, as observed by morphological analysis in cell stained with DAPI. The percentages of annexin V-FITC positive cells were 8.92%, 17.8%, 24.5% and 30.5% in MCF-7 cells treated with 0, 15, 30 and $60{\mu}M$ of 20(S)-PPD, respectively. Moreover, 20(S)-PPD could induce mitochondrial membrane potential loss, up-regulate Bax expression and down-regulate Bcl-2 expression. These events paralleled activation of caspase-9, -3 and PARP cleavage. Apoptosis induced by 20(S)-PPD was blocked by z-VAD-fmk, a pan-caspase inhibitor, suggesting induction of caspase-mediated apoptotic cell death. In conclusion, the 20(S)-PPD investigated is able to inhibit cell proliferation and to induce cancer cell death by a caspase-mediated apoptosis pathway.

배양액, 섬유아세포, 배양시간, 산소 농도 및 활성화 처리가 돼지 핵이식 배의 체외발달에 미치는 영향 (Effect of Media, Synchronization of Fibroblast Cells, Culture Time, $\textrm{O}_2$ Concentration and Activation on Developmental Rate of Nuclear Transferred Porcine Oocytes)

  • 전연화;이만휘;김상근
    • 한국수정란이식학회지
    • /
    • 제19권3호
    • /
    • pp.191-199
    • /
    • 2004
  • 본 연구는 돼지 태아 섬유아세포유래 공여세포를 미세주입에 의해 주입 후 재 조합한 핵 이식 배에 대한 배양액, 세포주기의 동기화, 배양시간 및 난자의 활성화에 따른 융합율과 체외발생율에 대해 조사하였다. 핵 이식 배를 NCSU-23, TL Hepes 및 TZM-3 배양액으로 1시간 및 8시간 배양하였을 때 배반포로의 분할율은 각각 15.6%, 14.0%, 15.0% 및 13.9%, 10.5%, 13.3%로서 배양액 및 시간에 따른 분할율의 유의적인 차이는 없었다. 공여핵원용 세포를 0, 8, 15시간 배양했을 때 G2/M기로의 체외발달율은 12.0%, 18.0%, 48.0%였다(p<0.01). 공여핵원용 세포를 12-24시간 배양했을 때 G2/M기로의 체외발달율은 유의한 증가를 나타내지 않았다. 공여핵원용 세포를 10% FBS + NCSU-23 배양액으로 1-2, 6-8, 12-14일간 배양 후 핵 이식한 배의 융합율은 각각 60.0%, 73.3%, 62.5%였으며, 분할율은 각각 36.0%, 56.7%, 50.0%였다. 0.5% FBS + NCSU-23, 0.5% + TL-Heaps 및 0.5% + TZM-3 배양액으로 5% $O_2$조건 하에서 배양하였을 때 핵 이식배의 $\geq$2 cell 및 배반포로의 발생율은 각각 12.5$\pm$1.6%, 11.1$\pm$1.8%, 11.7$\pm$1.0%였으며, 10% $O_2$조건 하에서 배양하였을 때 핵 이식배의 $\geq$2 cell 및 배반포로의 발생율은 각각 10.5$\pm$1.5%, 9.8$\pm$1.4%, 10.0$\pm$0.8%였다 배양액과 $O_2$ 조건에 따른 유의한 발생율에 차이는 인정되지 않았다.

Aflatoxin B1 Promotes Cell Growth and Invasion in Hepatocellular Carcinoma HepG2 Cells through H19 and E2F1

  • Lv, Jun;Yu, Ya-Qun;Li, Shu-Qun;Luo, Liang;Wang, Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2565-2570
    • /
    • 2014
  • H19 is an imprinted oncofetal gene, and loss of imprinting at the H19 locus results in over-expression of H19 in cancers. Aflatoxin B1(AFB1) is regarded as one of the most dangerous carcinogens. Exposure to AFB1 would most easily increase susceptibility to diseases such as hepatocellular carcinoma(HCC) but any possible relationship between AFB1 and H19 is not clear. In present study, we found that AFB1 could up-regulate the expression of H19 and promote cell growth and invasion by hepatocellular carcinoma HepG2 cells. Knocking down H19 RNA co ld reverse the effects of AFB1 on cell growth and invasion. In addition, AFB1 induced the expression of E2F1 and its knock-down could down-regulate H19 expression and suppress cell growth and invasion in hepatocellular carcinoma HepG2 cells. Furthermore, E2F1 over-expression could up-regulate H19 expression and promote cell growth and invasion, with binding to the H19 promoter being demonstrated by chromatin immunoprecipitation assays (ChIP). In summary, our results suggested that aflatoxin B1could promote cell growth and invasion in hepatocellular carcinoma HepG2 cells through actions on H19 and E2F1.

MiR-1297 Regulates the Growth, Migration and Invasion of Colorectal Cancer Cells by Targeting Cyclo-oxygenase-2

  • Chen, Pu;Wang, Bei-Li;Pan, Bai-Shen;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9185-9190
    • /
    • 2014
  • Cyclo-oxygenase-2(Cox-2), a key regulator of inflammation-producing prostaglandins, promotes cell proliferation and growth. Therefore, a better understanding of the regulatory mechanisms of Cox-2 could lead to novel targeted cancer therapies. MicroRNAs are strongly implicated in colorectal cancer but their specific roles and functions have yet to be fully elucidated. MiR-1297 plays an important role in lung adenocarcinoma and laryngeal squamous cell carcinoma, but its significance in colorectal cancer (CRC) has yet to be reported. In our present study, we found miR-1297 to be down regulated in both CRC-derived cell lines and clinical CRC samples, when compared with normal tissues. Furthermore, miR-1297 could inhibit human colorectal cancer LOVO and HCT116 cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo by targeting Cox-2. Moreover, miR-1297 directly binds to the 3'-UTR of Cox-2, and the expression level was drastically decreased in LOVO and HCT116 cells following overexpression of miR-1297. Additionally, Cox-2 expression levels are inversely correlated with miR-1297 expression in human colorectal cancer xenograft tissues. These results imply that miR-1297 has the potential to provide a new approach to colorectal cancer therapy by directly inhibiting Cox-2 expression.