• Title/Summary/Keyword: 2.1GHz band

Search Result 1,179, Processing Time 0.027 seconds

Reflectarray Antenna Capable of 1-Bit Switchable W-Band Beamforming Network

  • Asamani, Bismark;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.408-411
    • /
    • 2021
  • This paper presents a new reflectarray antenna capable with 1-bit switchable capability for W-band beamforming network. The proposed antenna has been optimized using two unit-cells with sizes of 1.0 mm and 1.3 mm to form a total number of 193 radiating elements on a square aperture surface of length 30 mm. These radiating elements are spaced 0.5 wavelengths apart and fed by a 15 dBi pyramidal horn antenna as the feed antenna placed 53 mm away from the aperture center. The proposed reflectarray achieves a realized peak gain of 22.52 dBi, a half-power beamwidth of 5.1° in both E- and H-planes at the test frequency of 80 GHz and operates over a wide bandwidth from 74 GHz to 90 GHz.

DEVELOPMENT OF A RADIO-NOISE MEASUREMENT SYSTEM (전파 잡음 측정 장치의 개발)

  • Park, Yong-Seon;Nam, Uk-Won;Gong, Gyeong-Nam;Seong, Hyeon-Il;Jeong, Jae-Hun
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.221-229
    • /
    • 1996
  • We have developed a measurement system with which harmful radio noise can be detected. It was designed to cover 1GHz band width centered at l.5GHz and 22.2GHz ($H_2O$ line).The system consists of pyramid horn antennas, receivers, equatorial tracking system, spectrum analyzer, and PC for the control of the servo and data taking. As a test of the system, the site of Taeduk Radio Astronomy Observatory (TRAO) was investigated to see if there is any harmful radio interference. It is found that in 22GHz band there is no significant radio noise, but there are identified and unidentified artificial radio signals in 1-2GHz range. However a simple calculation of radiation power shows that it is week enough not to affect the observations in TRAO.

  • PDF

Design and Implementation of Triple-band WLAN Antenna with Microstrip Lines (마이크로스트립 선로를 이용한 삼중대역 WLAN 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • In this paper, a microstrip-fed triple-band antenna for WLAN system with microstrip lines was designed, fabricated and measured. The proposed antenna is composed of two strip lines and slit in the ground plane and then designed in order to get triple band characteristics. We carried out simulation on $L_3$, $L_{10}$, and slit parameters, and adjusted the parameters of the proposed antenna to satisfy the required frequency band and bandwidth. The proposed antenna is made of $32.0{\times}44.0{\times}1.0mm$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shows that the proposed antenna obtained the -10 dB impedance bandwidth 120 MHz (890 MHz~1.01 MHz), 440 MHz (2.35~2.79 GHz), and 1,280 MHz (5.07~6.35 GHz) covering the triple WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required frequency band, respectively.

Design and Implementation of Bluetooth Module using 2.4 GHz ISM band (2.4 GHz ISM band용 bluetooth 모듈의 설계기술 연구)

  • 원광호;김재호;송병철;조위덕;손병일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.45-48
    • /
    • 2000
  • In this paper, we designed bluetooth module using 2.4 GHz ISM band. Bluetooth is wireless networking solution that connects PDA, cellular phone, printer, PC, etc each other. We integrated digital and RF part in one module. As a result, we can make low power consumption module that enables long battery life. In addition, we enlarged maximum available range of our module from 10m to l00m. This module satisfies bluetooth specification 1.0.

  • PDF

A Study on the Design of Dual-Band Small Pacth Antenna using T-shaped Feeder and Spiral Structure (T자형 급전선과 스파이럴구조를 이용한 이중대역 소형패치 안테나 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • This paper proposes an antenna that is located outside the PCB substrate of an electronic product to enable wireless communication in the ISM band. The PCB designed the T-shaped OPEN-STUB power supply line to be miniaturized so that it does not interfere with parts or interfere with design. The characteristics of the antenna were confirmed in the 2.4GHz and 5.8GHz bands using a T-shaped stub feeder and a spiral structure. The size of the antenna is 5mm in width × 6.5mm in length, and the thickness of the PCB is 1.2T. As a result of measurement of the manufactured antenna, it was possible to obtain a return loss of -10dB or more at 2.4GHz and 5.8GHz. In the E-plane, the gain was -4.45 dBi, and in the H-plane, the gain was -1.05 dBi. Therefore, the proposed small antenna for wireless communication showed excellent performance.

A Triangular Microstrip Antenna with T-Shaped Slits for Tunable Dual-Band Applications (T자 모양 슬릿 구조를 이용한 이중 대역 공진 주파수 변환 삼각형 마이크로스트립 안테나)

  • Lee, Keon-Myung;Sung, Young-Je;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • A triangular microstrip antenna with T-shaped slits is proposed for tunable dual-band applications. The proposed antenna is designed using chip capacitors as a prototype. From this result the capacitor can be replaced to a varactor diode to control capacitance value. Since the input impedance of the antenna can be varied with the value of the chip capacitors on the T-shaped slits, the resonant frequency may be changed. The return losses are better than 10 dB at the lower band of $0.78{\sim}1.21$ GHz and 20 dB at the upper band of $1.97{\sim}2.17$ GHz, respectively. This antenna has the bandwidth of about 10 MHz and 50 MHz at each band. The peak gains of the antenna yield 0 dBi at the lower band and 3 dBi at the upper band, respectively. Details of the antenna design are described, and its performances are presented and analyzed.

Implementation of Wideband Low Noise Down-Converter for Ku-Band Digital Satellite Broadcasting (Ku-대역 광대역 디지탈 위성방송용 저 잡음하향변환기 개발)

  • Hong, Do-Hyeong;Lee, Kyung Bo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • In this paper, wideband Ku-band downconverter was designed to receiver digital satellite broadcasting. The low-nose downconverter was designed to form four local oscillator frequencies(9.75, 10, 10.75 and 11.3 GHz) representing a low phase noise due to VCO-PLL with respect to input signals of 10.7 to 12.75 GHz and 3-stage low noise amplifier circuit by broadband noise matching, and to select intermediate frequency bands by digital control. The developed low-noise downconverter exhibited the full conversion gain of 64 dB, and the noise figure of low-noise amplifier was 0.7 dB, the P1dB of output signal 15 dBm, and the phase noise -85 dBc@10kHz at the band 1 carrier frequency of 9.75 GHz. The low noise block downconverter(LNB) for wideband digital satellite broadcasting designed in this paper can be used for global satellite broadcasting LNB.

A Ultra-Wideband Bandpass Filter Using DGS structure (DGS구조를 이용한 초광대역 대역통과 여파기)

  • Jung, Seung-Back;Yang, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.162-167
    • /
    • 2009
  • In this paper, we present a compact Ultra-Wideband band-pass filter using a high-pass filter and low-pass filter. The structure of our proposed band-pass filter is very simple and the DGS(Defected Ground Structure) structure is used to get the low-pass filter characteristic. Our proposed band-pass filter can be much smaller than a cascaded filter. As a result of measurement the insertion loss is less than 0.5dB throughout the pass-band of $2.1GHz{\sim}10.56GHz$, the return loss is more than 20dB and the group delay maximum variation is 0.23ns from 0.12ns to 0.35ns.

Wideband Chirp Signal Generation for W-Band SAR (W-대역 영상레이다를 위한 광대역 Chirp 신호 발생장치)

  • Lee, Myung-Whan;Jung, Jin Mi;Lee, Jun Sub;Singh, Ashisg Kumar;Kim, Yong Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.138-141
    • /
    • 2018
  • In this paper, we describe the designed digital waveform of a linear frequency-modulated (FM) chirp signal using field-programmable gate arrays (FPGAs) for image radar, and this signal is modulated with an I-Q modulator, and multiplied by 24 frequency multipliers to obtain a 94-GHz W-band wideband chirp generator. The developed chirp generator is an FM signal with a 94-GHz carrier frequency and a 960-MHz bandwidth, and the flatness is less than 1.0 dB at intermediate frequency (IF) (3.9 GHz), 2.0 dB in the W-band, and it has a 0.3-W output power in the W-band.

Design of U-Slot $2{\times}2$ array microstrip wideband antenna for wireless LAN (무선랜용 U-Slot $2{\times}2$ 배열 마이크로스트립 광대역 안테나 설계)

  • Ju Seong-nam;Kim Kab-ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.374-379
    • /
    • 2006
  • In this paper, the high Gain and the wideband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed and fabricated. Firstly to widen the bandwidth of microstrip antenna, U-Slot in rectangular form patch is inserted and used the microstrip line-Coaxial probe feeding method. Secondly, the antenna gain is improved to be embodied in $2{\times}2$ array form. As a result, in this paper, is designed and fabricated 5 GHz Band wideband U-Slot $2{\times}2$ array patch antenna using microstrip line-coaxial probe feeder. The U-Slot $2{\times}2$ array patch antenna were fabricated on the PEC using press-technique that is based on the simulation results. And the Anritsu 37169A vector network analyzer has been used in measurement of a prototype antenna. As a result, it was measured that the superior characteristic of wideband showing approximately 1 GHz ($5.110 GHz{\sim} 6.142 GHz$) of input return loss (VSWR < 2) in resonant frequency of 5 GHz band. And the antenna gain is 13 dBi, in both the E-plane and H-plane measured at 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.87 GHz.