• Title/Summary/Keyword: 2-stage compression and 1-stage expansion refrigeration system

Search Result 6, Processing Time 0.019 seconds

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants (암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측)

  • Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

Performance Analysis of Two-stage Compression Refrigeration System with Internal Heat Exchanger Applied Various Refrigerants (다양한 냉매를 적용한 내부열교환기 부착 2단 압축 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Heo, Seong-Kwan;Je, Jae-Myun;Jeon, Min-Ju;Son, Chang-Hyo;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.82-88
    • /
    • 2015
  • In this paper, cycle performance analysis of two-stage compression and one-stage expansion refrigeration system applied various refrigerants is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include degree of superheating and subcooling, compressor efficiency, evaporation temperature, condensing temperature, mass flow rate ration into inter-cooler, effectiveness of internal heat exchanger. The main results were summarized as follows : The COP of two-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling, mass flow rate ration of inter-cooler, evaporation temperature, but decreases with the increasing condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and 1-stage expansion using substitute refrigerant have an effect on COP of this system. The COP of alternative refrigerants was higher than the COP of R22 in this study, although the COP of some mixed refrigerants were lower than COP of R22.

Performance comparison of cascade refrigerator and two-stage compression refrigerator (캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.625-631
    • /
    • 2014
  • In order to obtain a low evaporation temperature ranging from $-30^{\circ}C{\sim}-50^{\circ}C$, a cascade refrigeration system and two-stage compression one-stage expansion refrigeration system is required. However, the research results of performance comparison of these refrigeration system are very scarce. This paper were compared the performance characteristics of R744-R404A cascade refrigeration system and R404A two-stage compression refrigeration system. The COP of R404A two-stage compression refrigeration system is about 36~57% greater than that of R744-R404A cascade refrigeration system in the range of evaporation temperature of $-30^{\circ}C{\sim}-50^{\circ}C$. But R404A two-stage compression refrigeration system is unstable because COP is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. In this case, not efficient for long-term use. Whereas R744-R404A cascade refrigeration system using natural refrigerants. Therefore, it is environmentally friendly. And this system is high-efficiency refrigeration system. The reason it can be configured by selecting the suitable refrigerant at high-temperature side and low-temperature side. From the above results, select the appropriate low temperature refrigeration system by considering the environmental and performance aspects.

Simulation on the Optimal Performance and Effective Operating Range of a 2-Stage Compression Heat Pump Using River Water (하천수 열원 이용 2단압축 열펌프의 최적성능 및 효용 운전범위에 관한 시뮬레이션 연구)

  • Jung, Tae-Hun;Park, Cha-Sik;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.295-303
    • /
    • 2008
  • The objectives of this study are to predict actual system performance and effective operating range of the 2-stage compression heat pump system using river water. An electronic expansion valve was applied to the simulation to analyze the effects of operating conditions on the system performance. The developed program was verified by comparing the predictions with the measured data. The results from the present model showed a good agreement with the measured data. In addition, the heat pump simulation was conducted by increasing condenser reservoir inlet temperature to investigate the benefits of the 2-stage compression over the 1-stage compression in the heating mode. The performance of the 2-stage compression cycle was better than that of the 1-stage compression when the inlet temperature of the condenser reservoir was higher than $40^{\circ}C$.

An Experimental Study on Performance Characteristics of Two-Stage Compression Refrigeration Systems (2단압축 냉동장치의 성능특성에 관한 실험적 연구)

  • 김재돌;오후규;김성규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 1994
  • The characteristics of the R-22 two-stage compression refrigeration systems were investigated. The apparatus consisted of 0.5HP and 1HP hermetic reciprocating compressors for the high and low stage sides respectively, a condenser, an evaporator, a heat exchanger, four expansion valves, and two intercoolers. The experiments covered a range of refrigerant flow rates from 24 to 84kg/h, and the inlet temperature of cooling water in the condenser and heat source water in the evaporator ranged from 20 to 30$^.\circ}C$The results Showed that the refrigerant flow rate had greater effect on the refrigerating capacities, the compression efficiency and the coefficient of performance of two-stage compression systems than the inlet temperature of heat source water. And all these values were decreased with increasing inlet temperatures of the cooling water. The pressure drops in the evaporator of two-stage compression systems were decreased in proportion to the increase in the inlet temperature of the heat source and cooling water, but it was increased by the refrigerant flow rate.

  • PDF