• Title/Summary/Keyword: 2-phenylethanol

Search Result 34, Processing Time 0.043 seconds

Effect of Lithium Chloride on the Borane Reduction of Organic Compound (보란-염화리튬에 의한 유기화합물의 환원반응)

  • Nung Min Yun;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1978
  • The effect of lithium chloride on the borane reduction of organic compounds was studied for three ketones, seven acid derivatives, three epoxides and cyclohexene in tetrahydrofuran at $0^{\circ}$. When compared with borane itself, borane-lithium chloride system enhanced the rates of reductions markedly of 2-heptanone, acetophenone, benzoyl chloride, phthalic anhydride, and three epoxides, whereas the reductions of benzophenone, four esters and cyclohexene showed little or no effect. $BH_3$-LiCl (1 : 0.1) reduced styrene oxide in 2 hr at $0^{\circ}$ to give 94.2 % yield of alcohols, 1-to 2-phenylethanol ratio being 60.8 to 39.2. And in the reduction of cyclohexene oxide, $BH_3$-LiCl (1 : 0.1) gave a quantitative yield of cyclohexanol in 2 hr at $0{\circ}$, however $BH_3$-LiCl (1 : 1) gave 58 % cyclohexanol and 42 % 2-chlorocyclohexanol. In the reduction of cyclohexene oxide, lithium nitrate showed no rate enhancement even when the salt was added in large excess. A formation of lithium chloroborohydride in the$BH_3$-LiCl system is suggested.

  • PDF

Volatile Constituents of Processed Squid Product (오징어 가공품의 냄새성분에 관한 연구)

  • Chiaki Koiiumi;Toshiaki Ohshima;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 1990
  • The precursor substance and volatile components of cooked flavor of squid meat were studied. Volatile components were trapped by simultaneous distillation-extraction method, and these were fractionated into the neutral, basic, phenolic and acidic fraction. Volatile flavor components in these frations were analyzed by GC and GC-MS. 80% methanol solution was the most effective solvent for extraction of the precursor substance for cooked flavor. The neutral and basic fraction, by organoleptic test, seem to have a major effect on squid-like flavor. Forty-four compounds, including 2 hydorcarbons, 10 alcohols, 5 aldehydes, 1 ketone, 1 furan, 3 sulfide compounds, 7 pyrazines, 2 pyridines, 1 amino, 2 phenols and 10 acids, identified as cooked flavor compounds of squid meat.

  • PDF

An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential

  • Syed, Riyaz-Ul-Hassan;Strobel, Gary;Geary, Brad;Sears, Joe
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2,4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1,8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.

Effects of Starter Candidates and NaCl on the Production of Volatile Compounds during Soybean Fermentation

  • Jeong, Do-Won;Lee, Hyundong;Jeong, Keuncheol;Kim, Cheong-Tae;Shim, Sun-Taek;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • We inoculated different combinations of three starter candidates, Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compound production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) nearly reached their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentrations in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed cultures of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.

Quality Characteristics of Mash of Takju Prepared by Different Raw Materials (원료를 달리하여 담금한 탁주 발효 과정중의 술덧의 품질특성)

  • Lee, Joo-Sun;Lee, Taik-Soo;Noh, Bong-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.330-336
    • /
    • 1996
  • Quality characteristics of mash of takju prepared by different raw materials such at nonglutinous rice. glutinous rice, barley and wheat flour were investigated during fermentation. At the beginning stage of fermentation, ethanol content was in the range of $0{\sim}1.2%$ but it was increased to $9.8{\sim}11.6%$ after 16 day of fermentation. takju that was made of nonglutious rice with starter showed higher ethanol content than any other treatment. At the first stage, pH of takju that was made of nonglutinous rice without starter was 6.57 while other sample showed pH $5.04{\sim}5.80.$ There was no significant difference in pH value between treatments after 2 day of fermentation. Total acid was increased rapidly at the first stage of fermentation, and increased slowly after 2 day of fermentation. Takju that was made of nonglutious rice without of fermentation, and increased slowly after 2 day of fermentation. Takju that was made of nonglutious rice without addition starer showed higher total acid content than the other teratments. Total sugar contents were $19.18{\sim}20.23%$ at the beginning of fermentation, and decreased to $5.21{\sim}14.03%$ after 2-4 days of fermentation. Takju that was made of wheat flour showed higher value of total sugar during the fermentation. Reducing sugar contents of takju decreased with fermentation progressing to $0.2{\sim}0.5%$ after 16 day if fermentation. L value decreased during the fermentation. period and that of takju that was made of barley had lowest L value among the treatment. Alcohols, such as n-propanol ($nd{\sim}0.05\;mg/ml$), iso-butanol (0.02), iso-amyl alcohol ($nd{\sim}0.13$), n-hexanol ($nd{\sim}0.17$), n-heptanol ($nd{\sim}0.09$), and phenylethanol ($nd{\sim}0.02$) were detected. There were no alcohols detected at the beginning of fermentation, but their contents were increased during fermentation.

  • PDF

Volatile Flavor Compounds in Commercial Vinegar Beverages Derived from Fruits (과일유래 시판 식초음료류의 휘발성 향기성분)

  • Jeong, Eun-Jeong;Jeon, Seon-Young;Baek, Jeong-Hwa;Cha, Yong-Jun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.292-299
    • /
    • 2011
  • This study compared volatile flavor profiles of 4 commercial vinegar beverages (Italian vinegar beverage (IVB), Japanese vinegar beverage (JVB), Japanese Yuzu-Ponz (JYP), and Korean white wine vinegar beverage (KWVB)). Flavor components of vinegar beverages (VBs) were determined using SPME/GC/MSD. The profiles of VBs were as follows; IVB (11 acids, 17 esters, 10 alcohols, 8 aldehydes, 3 terpenes, 4 aromatic hydrocarbons, 9 ketones), JVB (7 acids, 8 esters, 9 alcohols, 7 aldehydes, 13 terpenes, 7 aromatic hydrocarbons, 1 ketones, 3 miscellaneous compounds), JYP (3 acids, 12 esters, 8 alcohols, 7 aldehydes, 63 terpenes, 6 aromatic hydrocarbons, 2 ketones, 5 miscellaneous compounds), KWVB (10 acids, 10 esters, 9 alcohols, 8 aldehydes, 2 terpenes, 5 aromatic hydrocarbons, 4 ketones, 2 miscellaneous compounds). IVB and JVB showed similar flavor compositions (acids, ketones and esters in particular), whereas major components in JYP and KWVB were terpenes (79.6%) and acids (81.0%), respectively. Five compounds including 2-phenylethyl acetate (floral, fruity, sweet odor), 2-phenylethanol (floral, rose odor), vitispirane (fruity odor), geranylacetone (fragrant odor) and acetic acid were identified as major components in balsamic vinegar beverages.

Reaction of Sodium Diethyldihydroaluminate with Selected Organic Compounds Containing Representative Functional Groups

  • Yoon Nung Min;Shon Young Seok;Ahn Jin Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess sodium diethyldihydroaluminate (SDDA) with 68 selected organic compounds containing representative functional groups were examined under standard conditions (THF-toluene, $0^{\circ}C$ in order to compare its reducing characteristics with lithium aluminum hydride (LAH), aluminum hydride, and diisobutylaluminum hydride (DIBAH) previously examined, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, thiols and amines evolve hydrogen rapidly and quantitatively. Aldehydes and ketones of diverse structure are reduced rapidly to the corresponding alcohols. Reduction of norcamphor gives 11% exo-and 89% endo-norborneol. Conjugated aldehydes such as cinnamaldehyde are rapidly and cleanly reduced to the corresponding allylic alcohols. p-Benzoquinone is mainly reduced to hydroquinone. Hexanoic acid and benzoic acid liberate hydrogen rapidly and quantitatively, however reduction proceeds very slowly. Acid chlorides and esters tested are all reduced rapidly to the corresponding alcohols. However cyclic acid anhydrides such as succinic anhydride are reduced to the lactone stage rapidly, but very slowly thereafter. Although alkyl chlorides are reduced very slowly alkyl bromides, alkyl iodides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced very slowly; however, tertiary amides take up 1 equiv of hydride rapidly. Tertiary amides could be reduced to the corresponding aldehydes in very good yield ( > 90%) by reacting with equimolar SDDA at room temperature. Hexanenitrile is reduced moderately accompanying 0.6 equiv of hydrogen evolution, however the reduction of benzonitrile proceeds rapidly to the imine stage and very slowly thereafter. Benzonitrile was reduced to give 90% yield of benzaldehyde by reaction with 1.1 equiv of hydride. Nitro compounds, azobenzene and azoxybenzene are reduced moderately at $0^{\circ}C$, but nitrobenzene is rapidly reduced to hydrazobenzene stage at room temperature. Cyclohexanone oxime is reduced to the hydroxylamine stage in 12 h and no further reaction is apparent. Pyridine is reduced sluggishly at $0^{\circ}C$, but moderately at room temperature to 1,2-dihydropyridine stage in 6 h; however further reaction is very slow. Disulfides and sulfoxides are reduced rapidly, whereas sulfide, sulfone, sulfonic acid and sulfonate are inert under these reaction conditions.

Screening of Volatile Organic Compound-Producing Yeasts and Yeast-Like Fungi against Aflatoxigenic Aspergillus flavus

  • Nasanit, Rujikan;Jaibangyang, Sopin;Onwibunsiri, Tikamporn;Khunnamwong, Pannida
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Aflatoxin contamination in rice has been documented in a number of studies, and has a high incidence in Asian countries, and as such, there has been a growing interest in alternative biocontrol strategies to address this issue. In this study, 147 strains of yeasts and yeast-like fungi were screened for their potential to produce volatile organic compounds (VOCs) active against Aspergillus flavus strains that produce aflatoxin B1 (AFB1). Five strains within four different genera showed greater than 50% growth inhibition of some strains of A. flavus. These were Anthracocystis sp. DMKU-PAL124, Aureobasidium sp. DMKU-PAL120, Aureobasidium sp. DMKU-PAL144, Rhodotorula sp. DMKU-PAL99, and Solicococcus keelungensis DMKU-PAL84. VOCs produced by these microorganisms ranged from 4 to 14 compounds and included alcohols, alkenes, aromatics, esters and furans. The major VOCs produced by the closely related Aureobasidium strains were found to bedistinct. Moreover, 2-phenylethanol was the most abundant compound generated by Aureobasidium sp. DMKU-PAL120, while methyl benzeneacetate was the major compound emitted from Aureobasidium sp. DMKU-PAL144. On the other hand, 2-methyl-1-butanol and 3-methyl-1-butanol were significant compounds produced by the other three genera. These antagonists apparently inhibited A. flavus sporulation and mycelial development. Additionally, the reduction of the AFB1 in the fungal-contaminated rice grains was observed after co-incubation with these VOC-producing strains and ranged from 37.7 ± 8.3% to 60.3 ± 3.4%. Our findings suggest that these same microorganisms are promising biological control agents for use against aflatoxin-producing fungi in rice and other agricultural products.

Antimicrobial Effects of Photodynamic Therapy Using Blue Light Emitting Diode with Photofrin and Radachlorine against Propionibacterium acnes

  • Kwon, Pil-Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Photodynamic therapy (PDT) apply photosensitizers and light. The purpose of this study was to evaluate the in vitro efficacy of PDT using blue LED (light emitting diode) with photofrin and radachlorin for Propionibacterium acnes. The colony forming units method was used to assess the antibacterial activity. Suspension (1 mL) containing P. acnes at $1{\times}10^5CFU/mL$ were prepared and then 2 fold serial diluted to $12.5{\mu}g/mL$ from $50{\mu}g/mL$ concentration of photofrin and radachlorin. After 60 minutes incubation, light was irradiated for 10 to 30 minutes using the following light source of wavelength 460 nm, each energy density 36, 72 and $108J/cm^2$. Bacterial growth was evaluated after 72 hours incubation in a Phenylethanol Blood Agar (PEBA) culture. In addition, flow cytometric analysis were performed to measure the live cell after PDT. Also transmission electron microscopy (TEM) was employed to evaluate the effect of pathogens by PDT. The PDT Group was perfectly killed to all kind of photosensitizers dose of $12.5{\mu}g/mL$ with irradiation of 10 minutes. Also other Groups were killed to all kind of photosensitizers dose of $6.25{\mu}g/mL$ with irradiation time of 20 and 30 minutes. The flow cytometry showed a lower number of viable bacteria in the PDT group compared to the control group. The images of the TEM results were showed in cytoplasmic membrane damage and partially deformed to cell morphologies. These results suggest that radachlorin and photofrin combine blue LED PDT can be effectively treated when was proved treatment for acnes therapy.

Volatile Flavor Components of Buckwheat-Green Tea (메밀녹차의 향기성분)

  • Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1111-1114
    • /
    • 2007
  • The volatile flavor components of buckwheat (Fagopyrum esculentum Moench)-green tea were analyzed and identified. To make tea having good flavor and functional property, parched buckwheat (50%) was mixed with green tea (50%). The extraction of volatile flavor compounds of buckwheat-green tea was accomplished by a simultaneous distillation and extraction method using a Likens and Nickerson's extraction apparatus. The concentrated extract was analyzed and identified by gas chromatography and GC-mass spectrometry. The main volatile flavor components of buckwheat-green tea were compounds that originated from parched buckwheat and the green tea. The former were 15 pyrazines having roasted and nutty aroma and methylbutanals and furfural having sweet-aroma. The latter were nerolidol, linalool, indole, ${\beta}-ionone$ and geraniol etc having flower-like odor in green tea.