• Title/Summary/Keyword: 2-layer 아스팔트

Search Result 52, Processing Time 0.021 seconds

Determination of the Layer Thickness for Long-Life Asphalt Pavement (장수명 아스팔트포장 단면설계에 관한 연구)

  • Park, Hee-Mun;Kim, Je-Won;Hwang, Sung-Do;Lee, Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.23-31
    • /
    • 2005
  • This study is a part of research for developing the technologies of long life pavements having more than 40-year design life. The objective of this study is to develop the simplified design procedure for determining the layer thickness and modulus of the long life pavement. A synthetic database was established using the finite element program of a pavement structure with various combinations of layer thickness and modulus. The synthetic database includes the structural and material information, surface deflection, and critical pavement responses. Using the developed synthetic database, this paper suggests the minimum layer thickness and modulus for long life pavements bared on the limited strain level concept. Results demonstrate that the pavement greater than 410mm of total AC layer thickness is considered as the long life pavements regardless of the material characteristics and thickness in each layer. To become a long life pavement, a total thickness of AC layer should be greater than 250mm. The design procedure for determining the layer thickness and modulus of the pavements with AC layer thickness ranging from 250 to 410mm is also presented in this paper.

  • PDF

Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections (Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발)

  • Son, Jong-Chul;Rhee, Suk-Keun;An, Deok-Soon;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.115-124
    • /
    • 2006
  • The objectives of this paper are to develop the structural condition evaluation technique using Falling Weight Deflectometer deflections and propose the structural condition criteria for asphalt pavements. To figure out correlation between surface deflections and critical pavement responses, the synthetic database has been established using the finite element pavement structural analysis program. A regression approach was adopted to develop the pavement response model that can be used to compute the stresses and strains within pavement structure using the FWD deflections. Based on the pavement response model, the procedure for assessing the structural condition of pavement layers was proposed in this study. To validate the condition evaluation procedure for asphalt pavements, the FWD test, dynamic cone penetrometer test, and repeated triaxial compression test were conducted on 11 sections of national highway and 8 sections of local road. Test results indicate that the tensile strain at the bottom of AC layer and AC elastic modulus were good indicators for estimating the stiffness characteristics of AC layer. For subbase layer, the BDI value and compressive strain on top of the subbase layer were appropriate to predict the structural capacity of subbase layer. The BCI value and compressive strain on top of the subgrade were found to be good indicators for evaluating the structural condition of the subgrade. The evaluation criteria for structural condition in asphalt pavements was also proposed in this paper.

  • PDF

Viscoelastic Behaviors of Geosynthetic-Reinforced Asphalt Pavements (섬유보강 아스팔트 포장의 점탄성 거동연구)

  • In, Sik-Youn;Kim, Hyung-Bae;Ann, Sung-Sun;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.37-45
    • /
    • 2004
  • The asphalt concrete pavement takes various advantages of better riding quality, serviceability and easier maintenance. At the same time, it addresses a weak point of the premature failures due to rapid increasement of traffic volume, heavy vehicles and high temperature in summer. It increases the expenditure of maintenance and repair. In order to improve the performance of asphalt pavement avoiding this premature failure, the use reinforcements with geosynthetics have been considered. Geosynthetics are known as an effective reinforcement to restrain fatigue and reflective cracks in asphalt pavements. In this study, a comprehensive parametric study is conducted to capture the efficiency of geosynthetic-reinforcements using viscoelastic properties of the asphalt concrete(AC) layer. The investigated parameters were reinforcement location, AC layer thickness, temperature distribution across the AC layer and modulus of AC and base layer. As a result of observations, that reinforced asphalt concrete could be used effectively for improving resistance against fatigue cracks and permanent deformation. Especially, when a geogrid was placed at the interface between the asphaltic base and the subbase, tensile stress in the horizontal direction was significantly reduced.

  • PDF

Economic Analysis of Two-Layer Quiet Asphalt Pavement Considering Noise Cost Benefits (소음 편익 비용을 고려한 복층 저소음 아스팔트 포장의 경제성 분석)

  • Kang, Haet Vit;Park, Ki Sun;Kim, Nak Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1581-1587
    • /
    • 2014
  • Two-lalyered quiet asphalt pavements are well known for their noise reduction capabilities compared to the conventional ones. This study was conducted to analyze the economic effects on two-layered quiet asphalt pavement rather than on one-layered. Noise prediction was performed on the data surveyed from the two-layered quiet asphalt pavement. In addition, the economic analysis was executed considering cost benefits using the noise prediction result. The permeability test was also investigated to evaluate the clogging recovery of two-layered quiet asphalt pavement. Analysis results revealed that the construction cost of two-layered quiet asphalt pavements was cheaper than that of the conventional soundproof walls. The two-layered quiet asphalt pavement with simulated clogging conditions was satisfied the permeability requirements of the permeable asphalt pavements. The permeability test results showed that the permeable time was recorded as 6.77 seconds for one cycle of cleaning job with 400 mL of water.

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

Study on a Prediction Model of the Tensile Strain Related to the Fatigue Cracking Performance of Asphalt Concrete Pavements Through Design of Experiments and Harmony Search Algorithm (실험계획법 및 하모니 검색 알고리즘을 이용한 아스팔트 포장체의 피로균열 공용성 관련 인장변형률 추정모델 연구)

  • Lee, Chang-Joon;Kim, Do-Wan;Mun, Sung-Ho;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2012
  • This research describes how to predict a model of the tensile strain related to the fatigue cracking performance of several asphalt concrete structures through design of experiments(e.g., Response Surface Methodology) and harmony search(HS) algorithm. The axisymmetric analysis program of finite element method, which is the KICTPAVE, was used to determine the strain level at the interface layer between asphalt layer and lean concrete layer. Once the training database set of various strain levels was constructed under the several condition of layer stiffnesses and thicknesses in the asphalt concrete structures, the data set was trained through the HS algorithm in order to determine the regression coefficients defined based on a response surface methodology. Furthermore, the testing set, which was not used for the training procedure of HS algorithm, was also constructed in order to evaluate whether the regression coefficients of a prediction model can be appropriately applied for other cases in asphalt concrete structures.

Development of Failure Criterion for Asphalt Concrete Pavement Based on AASHTO Design Guide (AASHTO 설계법을 이용한 아스팔트 콘크리트 포장체의 피로파괴준식 개발에 관한 연구)

  • Kim, Soo Il;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 1991
  • Failure criteria for asphalt concrete pavements are developed combining the AASHTO design equation and the multi-layered elastic theory. Thickness range including typical layer thicknesses of four-layer Korea highway structures are employed for pavement structure models. Total of 2430 pavement models with different layer thicknesses and moduli are analyzed. Models with crushed stone and asphalt stabilized base courses are equally included in the analysis. Number of load repetition and the maximum tensile strain at the bottom of asphalt layer are computed from the AASHTO design equation with terminal PSI=2.5 and multi-layered elastic computer program, SINELA, respectively. Failure criteria are developed through the regression analysis. From the analysis, failure criteria for the asphalt concrete pavements with 50% and 95% reliability levels are developed. It is found that the failure criterion of 95% reliability level gives similar results with existing fatigue failure criteria whose terminal performance condition is crack development when compared in a graphical form an equation to estimate failure criterion for a specific reliability level is also proposed.

  • PDF

A Study on the Characteristics of Fatigue Failure for Asphalt Pavement (아스팔트포장(鋪裝)의 피로파괴특성(疲勞破壞特性)에 관한 연구(硏究))

  • Seo, Chae Yeon;Lee, Kye Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.9-20
    • /
    • 1987
  • The main object of this study are to investigate an effect of the characteristics of materials and to seize the behavior of fatigue failure of asphalt pavement with the results of laboratory tests for asphalt mixtures. In order to prove the practical application of applied methods, the relationships between temperature, depth of asphalt layer, elastic modulus and the number of fatigue failure by the results of elastic theory and fatigue failure envelope are also considered.

  • PDF

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.