• Title/Summary/Keyword: 2-groupoid

Search Result 11, Processing Time 0.019 seconds

GROUPOID AS A COVERING SPACE

  • Park, Jong-Suh;Lee, Keon-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.67-75
    • /
    • 1984
  • Let X be a topological space. We consider a groupoid G over X and the quotient groupoid G/N for any normal subgroupoid N of G. The concept of groupoid (topological groupoid) is a natural generalization of the group(topological group). An useful example of a groupoid over X is the foundamental groupoid .pi.X whose object group at x.mem.X is the fundamental group .pi.(X, x). It is known [5] that if X is locally simply connected, then the topology of X determines a topology on .pi.X so that is becomes a topological groupoid over X, and a covering space of the product space X*X. In this paper the concept of the locally simple connectivity of a topological space X is applied to the groupoid G over X. That concept is defined as a term '1-connected local subgroupoid' of G. Using this concept we topologize the groupoid G so that it becomes a topological groupoid over X. With this topology the connected groupoid G is a covering space of the product space X*X. Further-more, if ob(.overbar.G)=.overbar.X is a covering space of X, then the groupoid .overbar.G is also a covering space of the groupoid G. Since the fundamental groupoid .pi.X of X satisfying a certain condition has an 1-connected local subgroupoid, .pi.X can always be topologized. In this case the topology on .pi.X is the same as that of [5]. In section 4 the results on the groupoid G are generalized to the quotient groupoid G/N. For any topological groupoid G over X and normal subgroupoid N of G, the abstract quotient groupoid G/N can be given the identification topology, but with this topology G/N need not be a topological groupoid over X [4]. However the induced topology (H) on G makes G/N (with the identification topology) a topological groupoid over X. A final section is related to the covering morphism. Let G$_{1}$ and G$_{2}$ be groupoids over the sets X$_{1}$ and X$_{2}$, respectively, and .phi.:G$_{1}$.rarw.G$_{2}$ be a covering spimorphism. If X$_{2}$ is a topological space and G$_{2}$ has an 1-connected local subgroupoid, then we can topologize X$_{1}$ so that ob(.phi.):X$_{1}$.rarw.X$_{2}$ is a covering map and .phi.: G$_{1}$.rarw.G$_{2}$ is a topological covering morphism.

  • PDF

DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS

  • Yi, In-Hyeop
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • For a locally compact higher rank graph ${\Lambda}$, we construct a two-sided path space ${\Lambda}^{\Delta}$ with shift homeomorphism ${\sigma}$ and its corresponding path groupoid ${\Gamma}$. Then we find equivalent conditions of aperiodicity, cofinality and irreducibility of ${\Lambda}$ in (${\Lambda}^{\Delta}$, ${\sigma}$), ${\Gamma}$, and the groupoid algebra $C^*({\Gamma})$.

Cofinite Graphs and Groupoids and their Profinite Completions

  • Acharyya, Amrita;Corson, Jon M.;Das, Bikash
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.399-426
    • /
    • 2018
  • Cofinite graphs and cofinite groupoids are defined in a unified way extending the notion of cofinite group introduced by Hartley. These objects have in common an underlying structure of a directed graph endowed with a certain type of uniform structure, called a cofinite uniformity. Much of the theory of cofinite directed graphs turns out to be completely analogous to that of cofinite groups. For instance, the completion of a directed graph Γ with respect to a cofinite uniformity is a profinite directed graph and the cofinite structures on Γ determine and distinguish all the profinite directed graphs that contain Γ as a dense sub-directed graph. The completion of the underlying directed graph of a cofinite graph or cofinite groupoid is observed to often admit a natural structure of a profinite graph or profinite groupoid, respectively.

CHARACTERIZATION OF TRAVEL GROUPOIDS BY PARTITION SYSTEMS ON GRAPHS

  • Cho, Jung Rae;Park, Jeongmi
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • A travel groupoid is a pair (V, ${\ast}$) of a set V and a binary operation ${\ast}$ on V satisfying two axioms. For a travel groupoid, we can associate a graph in a certain manner. For a given graph G, we say that a travel groupoid (V, ${\ast}$) is on G if the graph associated with (V, ${\ast}$) is equal to G. There are some results on the classification of travel groupoids which are on a given graph [1, 2, 3, 9]. In this article, we introduce the notion of vertex-indexed partition systems on a graph, and classify the travel groupoids on the graph by the those vertex-indexed partition systems.

LOCALLY-ZERO GROUPOIDS AND THE CENTER OF BIN(X)

  • Fayoumi, Hiba F.
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper we introduce the notion of the center ZBin(X) in the semigroup Bin(X) of all binary systems on a set X, and show that if (X,${\bullet}$) ${\in}$ ZBin(X), then x ${\neq}$ y implies {x,y}=${x{\bullet}y,y{\bullet}x}$. Moreover, we show that a groupoid (X,${\bullet}$) ${\in}$ ZBin(X) if and only if it is a locally-zero groupoid.

BRACKET FUNCTIONS ON GROUPOIDS

  • Allen, Paul J.;Kim, Hee Sik;Neggers, Joseph
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.375-381
    • /
    • 2019
  • In this paper, we introduce an operation denoted by [$Br_e$], a bracket operation, which maps an arbitrary groupoid ($X,{\ast}$) on a set X to another groupoid $(X,{\bullet})=[Br_e](X,{\ast})$ which on groups corresponds to sending a pair of elements (x, y) of X to its commutator $xyx^{-1}y^{-1}$. When applied to classes such as d-algebras, BCK-algebras, a variety of results is obtained indicating that this construction is more generally useful than merely for groups where it is of fundamental importance.

A NOTE ON THE AUSTIN'S GROUPOIDS

  • Cho, Jung-R.;Dudek, Jozef
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • On a groupoid satisfying the Austin's identity, every n-ary linear term is essentially n-ary. That is, if a term has no variables appearing more than once, then the term depends on every variable it involves.

  • PDF

CONSTRUCTION OF Γ-ALGEBRA AND Γ-LIE ADMISSIBLE ALGEBRAS

  • Rezaei, A.H.;Davvaz, Bijan
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • In this paper, at first we generalize the notion of algebra over a field. A ${\Gamma}$-algebra is an algebraic structure consisting of a vector space V, a groupoid ${\Gamma}$ together with a map from $V{\times}{\Gamma}{\times}V$ to V. Then, on every associative ${\Gamma}$-algebra V and for every ${\alpha}{{\in}}{\Gamma}$ we construct an ${\alpha}$-Lie algebra. Also, we discuss some properties about ${\Gamma}$-Lie algebras when V and ${\Gamma}$ are the sets of $m{\times}n$ and $n{\times}m$ matrices over a field F respectively. Finally, we define the notions of ${\alpha}$-derivation, ${\alpha}$-representation, ${\alpha}$-nilpotency and prove Engel theorem in this case.