• 제목/요약/키워드: 2-dimensional finite element analysis

검색결과 1,176건 처리시간 0.031초

보강토 교대 구조물의 하중지지 특성에 관한 3차원 유한요소해석 (3D Finite Element Analysis on Load Carrying Capacity of Geosynthetic-reinforced Bridge Abutment)

  • 유충식
    • 한국지반공학회논문집
    • /
    • 제26권5호
    • /
    • pp.15-26
    • /
    • 2010
  • 본 논문에서는 보강토 교대 옹벽에 대한 3차원 유한요소해석 내용을 다루었다. 먼저 북미지역에 적용된 보강토 교대옹벽의 적용 사례와 구조에 대해 알아보았다. 해석에 있어서는 높이 4.8m 폭 14m의 제원을 갖는 가상의 보강토 교대를 고려하였으며 이에 대해 3차원 유한요소해석을 실시하여 3 차원 거동특성과 하중지지력에 대한 내용을 검토하였으며, 해석 결과는 벽제 변위 및 보강재 유발인장력 등을 토대로 3차원 거동에 대한 검토가 가능하도록 제시하였다. 그 결과 교대 보강토 옹벽의 벽체 변위 및 보강재 유발인장력 등 거동 특성 검토 항목에 있어 설계시 적용하는 2차원 평면변형가정 단면의 결과보다 현저히 작게 검토되어 현 설계기준은 다소 보수적인 결과를 주는 것으로 검토되었다.

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

선박 해양구조물 파이프 루프 곡선부의 응력 해석 (Stress Analysis of Curved Portions of Pipe Loops Used in Ships and Offshore Structures)

  • 박치모;배병일
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.52-57
    • /
    • 2011
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. While it has been a usual practice to conduct bending stress analyses of these curved pipes using the straight-beam theory, this paper adopts two different types of finite elements, straight-beam elements and two-dimensional shell elements, for finite element analyses of a variety of curved pipes. It then compares the analysis results for two different types of elements to determine correction factors, which can be used to transform the bending displacements and bending stresses obtained by straight-beam elements to those obtainable by two-dimensional shell elements. The paper ends with a practical suggestion on how to efficiently use these correction factors to estimate the combined axial and normal stresses in a curved portion of a pipe.

사일로 구조형식 중저준위 방폐물 처분동굴의 유한요소 해석 (Finite Element Analysis of Silo Type Underground Opening for LILW Disposal Facility)

  • 김선훈;김광진
    • 한국전산구조공학회논문집
    • /
    • 제34권5호
    • /
    • pp.339-345
    • /
    • 2021
  • 본 논문에서는 우리나라의 중저준위 방폐물 처분을 위한 사일로 형식 지하동굴의 유한요소해석을 수행하였다. 사일로의 벽체부분은 지름 25m의 원형구조이고, 높이는 35m이다. 사일로의 천장부분은 지름 30m의 돔 형식이고, 높이 17.4m의 규모이다. 사일로는 해수면으로부터 -80m에서 -130m에 위치하고 있다. 중저준위 방폐물 처분 1단계 시설로 6개의 사일로가 건설되어 운영되고 있으나, 본 연구에서는 1개의 사일로에 대해서 고려하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소모델과 3차원 유한요소모델을 생성하였다. Generalized Hoek and Brown Model이 수치해석에 적용되었다. 다양한 측압계수(수평방향 현장응력과 수직방향 현장응력의 비)의 변화에 따른 사일로 형식 지하동굴의 유한요소해석을 수행하였으며, 수치해석결과 및 분석결과가 제시되었다.

열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석 (Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound)

  • 김수영;임용택
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

유한요소 모델링을 이용한 아크 스폿 용접의 너깃 형상 예측 (Prediction of Nuggest Shape by Finite Element Modeling in Arc-spot Welding)

  • 황종근;장경복;김기순;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.84-90
    • /
    • 1999
  • The shape of weld nuggest in arc spot welding of 304 stainless steel was found by searching thermal history of a weld joint through a three-dimensional finite element model. The problem consists of one in which the finite element mesh is growing continuously in time in order to accomodate metal transfer in arc spot welding using element rebirth technique. The analysis was performed on the basis of experimental results. The finite element program MARC, along with a few user subroutines, was employed to obtain the numerical results. Temperature-dependent thermal properties, stir effect in weld pool, effect of phase transformation, and the convective and radiative boundary conditions are included in the model. Numerically predicted shape of weld nuggest is compared with the experimentally observed shape.

  • PDF

분말단조 공정의 3차원 유한요소해석 (Three Dimensional Finite Element Analysis for Powder Forging Process)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제3권2호
    • /
    • pp.104-111
    • /
    • 1996
  • In order to obtain homogeneous and high quality products in powder compaction forging process, it is very important to control stress, strain, density and density distributions. Therefore, it is necessary to understand quantitatively the elasto-plastic deformation and densification behaviors of porous metals and metal powders. In this study, elasto-plastic finite element method using Lee-Kim's pressure dependent porous material yield function has been used for the analysis of three dimensional indenting process. The analysis predicts deformed geometry, stress, strain and density distribution and load. The calculated load is in good agreement with experimental one. The calculated results do not show axisymmetric distributions because of the edge effect. The core part which is in contact with the indentor and the outer diagonal edge part are in compressive stress states and the middle part is in tensile stress state. As a results, it can be concluded that three dimensional analysis is more realistic than axisymmetric assumption approach.

  • PDF

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성 (Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis)

  • 김상은;양현익
    • 한국CDE학회논문집
    • /
    • 제14권3호
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.