• 제목/요약/키워드: 2-dimensional diffusion

검색결과 319건 처리시간 0.025초

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF

해상공사에 따른 토사확산예측 (Pre-Estimation of Soil Diffusion Caused by the Sea Construction)

  • 신문섭
    • 한국해안해양공학회지
    • /
    • 제8권2호
    • /
    • pp.204-214
    • /
    • 1996
  • 본 연구의 목적은 새만금해역에서 방조제 축조에 따른 토사의 이동형태변화와 토사 확산을 알아보는 데 있다. 유동은 조석잔차류와 관측된 바람, 수온, 염분자료를 이용하여 계산되었다. 유동에 의한 토입자의 3차원적 거동은 Euler-Lagrange 방법으로 추적하였다. 방조제 축조에 따른 토사확산 및 이동 형태는 금강 하구 남쪽에서 고군산군도 북쪽에 대부분의 토사를 퇴적시켰다. 이것은 잔차류의 영향으로 판단된다.

  • PDF

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

헴트 소자의 해석적 직류 모델 (An Analytical DC Model for HEMT's)

  • 김영민
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.38-47
    • /
    • 1989
  • 헴트(HEMT) 소자의 순수 해석적 DC모델이 2차원 전하제어 시뮬레이션 결과[4]에 기초하여 제작되었다. 이 모델에서는 2-DEG 채널의 전자 운송 역학에 확산 효과를 추가하였다. 이 확산효과는 기존 1차원 DC모델에서 사용하는 전자 이동도 및 문턱전압을 증가시키는 효과를 가졌음을 보였다. 또한 2-DEG 농도분포함수를 piecewise 선형화하여 HEMT 소자의 subthreshold 특성의 해석적 모델을 추가하였고, 따라서 2-DEG의 채널 두께 및 게이트 용량을 게이트 전압의 함수로 나타내었다. I-V curve의 전류포화영역에서의 기울기를 모델하는데는 gate 밑의 전자포화채널 지역에서의 전자채널두께와 채널길이 변조현상을 함께 고려하였다. Troffimenkoff형의 전장의존 전자이동도를 사용하여 I-V곡선의 포화현상을 모델하였다. 또한 기존 1차원 모델에서 감안되지 않은 2차원 효과가 실제 전류특성곡선에서 매우 중요한 역할을 하며, 이 효과가 효과적으로 1개의 보정상수f로 보상됨을 보였고, 물리적으로 이 상수가 채널 GCA 지역과 채널포화지역 사이에 형성되는 채널천이지역의 전자농도와 관계됨을 보였다.

  • PDF

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • 전병선;이상선;황찬용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

3차원 정상상태의 드리프트-확산 방정식의 해석 프로그램 개발 (A development of the 3-dimensional stationary drift-diffusion equation solver)

  • 윤현민;김태한;김대영;김철성
    • 전자공학회논문지D
    • /
    • 제34D권8호
    • /
    • pp.41-51
    • /
    • 1997
  • The device simulator (BANDIS) which can analyze efficiently the electrical characteristics of the semiconductor devices under the three dimensional stationary conditions on the IBM PC was developed. Poisson, electon and hole continuity equations are discretized y te galerkin method using a tetrahedron as af finite element. The frontal solver which has exquisite data structures and advanced input/output functions is dused for the matrix solver which needs the highest cost in the three dimensional device simulation. The discretization method of the continuity equations used in BANDIS are compared with that of the scharfetter-gummel method used in the commercial three-dimensional device. To verify an accuracy and the efficiency of the discretization method, the simulation results of the PN junction diode and the BJT from BANDIS are compared with those of the commercial three-dimensiional device simulator such as DAVINCI. The maximum relative error within 2% and the average number of iterations needed for the convergence is decreased by more than 20%. The total simulation time of the BJT with 25542 nodes is decreased to about 60% compared with that of DAVINCI.

  • PDF

해석모델을 이용한 3차원 이온주입 시뮬레이터 개발 (Development of Three-Dimensional Ion Implantation Simulator Using Analytical Model)

  • 박화식;이준하;황호정
    • 전자공학회논문지A
    • /
    • 제30A권12호
    • /
    • pp.43-50
    • /
    • 1993
  • Three-dimensional simulator for the ion implantation process is developed. The simulator based on an analytical model which would be a choice with high computational efficiency and accuracy. This is an important issue for the simulation of a numerous number of processing steps required in the fabrication of ULSI or GSI. The model can explain scattering and bulk channeling mechanism (1D). It can also explain depth dependent lateral diffusion effect(2D) and mask effect(3D). The model is consist of one-dimensional JPD(Joined Pearson Distribution) function and two-dimensional modified Gaussian functions. Final implanted profiles under typical mask structures such as hole, line and island structure are obtained with varying ion species.

  • PDF

유한요소법을 이용한 IH-JAR의 열확산 예측에 관한 연구 (A Study on the Heat-Diffusion Prediction of Induction Heating JAR using Finite Element Method)

  • 오홍석
    • 한국화재소방학회논문지
    • /
    • 제16권2호
    • /
    • pp.8-13
    • /
    • 2002
  • 유도가열 기술은 담금질, 단조를 위한 예열, 용융 그리고 요리 등과 같은 산업 전반에 걸쳐서 아주 폭넓게 사용되는 기술이다. 본 논문에서는 IH-JAR의 효과적인 설계를 위하여 자계 및 열 해석을 하였다. IH-lAR의 내부자계는 3차원 축대칭 유한요소법을 사용하여 해석하였으며, 열원은 IH-JAR 내부에서 유도된 와전류에 의하여 발생되고, 열은 열원과 열방정식을 사용하여 계산되어진다. 또한, IH-JAR의 온도분포를 시간과 투자율에 따라 제시하였다.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.