• 제목/요약/키워드: 2-d]pyrimidine

검색결과 60건 처리시간 0.031초

Systematic Chirality Investigations of Zn-TLM binding Sites by 2D-NOESY Back-calculations

  • Kim, Daesung;Hoshik Won
    • 한국자기공명학회논문지
    • /
    • 제2권1호
    • /
    • pp.50-58
    • /
    • 1998
  • The systematic chirality investigations were made on the basic of the fact that zinc-binding tallysomycin (ZnTLMA) could have chiral centers (Zn, NC3, C6) at possible 4-, 5-, and 6-coordination models. Although our NMR data exhibit that the ligation sites are ${\beta}$-aminoalanine, ${\beta}$-hydroxyhistidine, and pyrimidine moiety, all possible coordination modes were tested out to see what kind of chiralities on NC3-C6 are favorable to each coordination mode. Tests were also made that take into account the specific configuration of functional groups, including ${\beta}$-aminoalanine, sugar ring, and ${\beta}$-hydroxyhistidine. Tests were finally extended to zinc-water binding and specific conformational studies by introducing various hydrogen bonding networks associated with the propionamide side chain and the carbamide group of mannose. Results of systematic chirality investigations exhibit that the S-S configuration of NC3-C6 is favorable to all of coordination models, but the R-S configuration, if exists at all, should have internal strain on C6 chiral center.

  • PDF

Potent Anticancer Effects of Lentivirus Encoding a Drosophila Melanogaster Deoxyribonucleoside Kinase Mutant Combined with Brivudine

  • Zhang, Nian-Qu;Zhao, Lei;Ma, Shuai;Gu, Ming;Zheng, Xin-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2121-2127
    • /
    • 2012
  • Objective: Deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) mutants have been reported to exert suicide gene effects in combined gene/chemotherapy of cancer. Here, we aimed to further evaluate the capacity of the mutanted enzyme and its potential for inhibiting cancer cell growth. Methods: We altered the sequence of the last 10 amino acids of Dm-dNK to perform site-directed mutagenesis and constructed active site mutanted Dm-dNK (Dm-dNKmut), RT-PCR and western bloting studies were used to reveal the expression of lentivirus mediated Dm-dNKmut in a breast cancer cell line (Bcap37), a gastric cancer cell line (SGC7901) and a colorectal cancer cell line (CCL187). [3H]-labeled substrates were used for enzyme activity assays, cell cytotoxicity was assessed by MTT assays, cell proliferation using a hemocytometer and apoptosis induction by thenannexin-V-FITC labeled FACS method. In vivo, an animal study was set out in which BALB/C nude mice bearing tumors were treated with lentivirus mediated expression of Dm-dNKmut with the pyrimidine nucleoside analog brivudine (BVDU, (E)-5-(2-bromovinyl)-(2-deoxyuridine). Results: The Dm-dNKmut could be stably expressed in the cancer cell lines and retained its enzymatic activity. Moreover, the cells expressing Dm-dNKmut exhibited increased sensitivity in combination with BVDU, with induction of apoptosis in vitro and in vivo. Conclusion: These findings underlined the importance of BVDU phosphorylated by Dm-dNKmut in transduced cancer cells and the potential role of Dm-dNKmut as a suicide gene, thus providing the basis for future intensive research for cancer therapy.

Comparison of Some 3-(Substituted-Benzylidene)-1, 3-Dihydro-Indolin Derivatives as Ligands of Tyrosine Kinase Based on Binding Mode Studies and Biological Assay

  • Olgen, Sureyya
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.1006-1017
    • /
    • 2006
  • A series of 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one, 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione and 2, 2'-dithiobis 3-(substituted-benylidene)-1, 3-dihydro-indole derivatives was investigated as inhibitor of $p60^{c-Src}$tyrosine kinase by performing receptor docking studies and inhibitory activity toward tyrosine phosphorylation. Some compounds were shown to be docked at the site, where the selective inhibitor PP1 [1-tert-Butyl-3-p-tolyl-1H-pyrazolo[3,4-d]pyrimidine-4-yl-amine] was embedded at the enzyme active site. Evaluation of all compounds for the interactions with the parameters of lowest binding energy levels, capability of hydrogen bond formations and superimposibility on enzyme active site by docking studies, it can be assumed that 3-(substituted-benzylidene)-1, 3-dihydro-indolin-2-one and thione derivatives have better interaction with enzyme active site then 2, 2'-dithiobis 3-(substituted-benzylidene)-1, 3-dihydro indole derivatives. The test results for the inhibitory activity against tyrosine kinase by Elisa method revealed that 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione derivatives have more activity then 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one derivatives.

Multiple functions of human UV DNA repair endonuclease III

  • Jang, Chang-Young;Kim, Joon
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.182-185
    • /
    • 2002
  • There are 3 UV DNA repair endonuclease activities in mammalian cells that cleave UV -irradiated DNA. Interestingly, mammalian UV endonuclease III with MW of 26.7kD has a lyase activity on AP sites. It also cleaves the phosphodiester bond within a cyclobutane pyrimidine dimer. Genomic analysis of human repair endonuclease III gene revealed that this gene has 100% sequence identity with ribosomal protein S3 (rpS3). Therefore, rpS3 seems to function both in translation and in DNA repair. This gene of about 6.1 kb contains 6 introns and 7 exons, and the first and fifth introns of human rpS3 gene contain functional U15 small nucleolar (sno) RNAs which appear to be involved in ribosome assembly. It is to be noted that the column profile of the endonuclease activity of rpS3 appears to be altered in Xeroderma Pigmentosum (XP) group D cells compared to normal cells indicating that this protein is involved in XP disease as well. XP is a human disease characterized by high sensitivity of skin by UV- or sun-light irradiation and by high frequency of developing skin cancers. We also report here that rpS3 protein is involved in other cellular functions.

  • PDF

NMR study of the interaction of T4 Endonuclease V with DNA

  • Lee, Bong-Jin;Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.80-80
    • /
    • 1995
  • T4 Endonuclease V (Mw 16,000) acts as a repair enzyme for UV induced pyrimidine dimers in DNA. Many researchers have studied the biochemical characteristics of the enzyme. However the precise action mechanism of T4 endo V has not fully elucidated yet. In our laboratory NMR spectroscopy technique is being used for the structural study of T4 endo V. Because of its low temperature stability and high content of ${\alpha}$-helix, the conventional $^1$H NMR technique was inapplicable. Therefore we utilized stable isotope labeling technique and so far prepared about 10 amino acid specific labeled proteins. The HSQC spectra of amino acid specific labeled proteins will help us to interpret the triple resonance 3D, 4D data which are under processing, We also studied the behaviors of specific amino acid residues whose roles might be critical. When the enzyme labeled by $\^$15/N-Thr was mixed with the substrate oligonucleotide (semispecific -TT- sequence), one crosspeak in its HSQC spectrum was completely desappeared, which means that one of seven Thr residues is in the binding site of the enzyme with DNA, This result is well consistent with previous report that implicated the Thr 2 residue in the activity of the enzyme. Similar studies were carried on the behaviors of Arg and Tyr residues.

  • PDF

Second-order Nonlinear Optical Properties of Amorphous Molecules Based on 5-(4-Diethylamino-benzylidene)-1,3-dimethyl-pyrimidine-2,4,6-trione

  • Lee, Seung-Mook;Rhee, Bum-Ku;Lee, Sang-Ho;Lee, Chul-Joo;Park, Ki-Hong
    • Journal of Photoscience
    • /
    • 제10권2호
    • /
    • pp.203-208
    • /
    • 2003
  • Two coupled molecules were successfully synthesized by condensation of amine-donor-substituted barbituric acid derivativies as nonlinear optical chromophores. A flexible spacer of the alkyl chain with different lengths of carbon chains (5 and 6 carbons) was introduced between two chromophores, which prevented crystallization and aggregation of molecules. Two coupled molecules (B-Cn-B, n=5, 6) had glass-transition temperatures on a second heating around 81 and 76$^{\circ}C$ without melting points, respectively. To explore the linear optical properties, thin-films were prepared and examined by a photometry method using Nd:YVO$_4$ CW laser. Also, microscopic and macroscopic nonlinear optical properties were measured by Hyper-Rayleigh Scattering (HRS) and the Maker Fringes method using Nd:YAG ps pulse laser, respectively. In spite of the moderate hyperpolarizabilities of coupled molecules, the second order NLO coefficient (d$\_$33/) was larger than the conventional Disperse Red 1 doped PMMA polymeric system.

  • PDF

Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus

  • Ahsan, Mohamed Jawed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1739-1744
    • /
    • 2016
  • We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration $10{\mu}M$) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and $100{\mu}M$) and three dose related parameters $GI_{50}$, TGI and $LC_{50}$ were calculated for each (3a-g) in micro molar drug concentrations (${\mu}M$). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a $GI_{50}$ of $0.03{\mu}M$. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with $GI_{50}$ values between 0.23 and $2.67{\mu}M$.

Biosynthesis of Isoprenoids: Characterization of a Functionally Active Recombinant 2-C-methyl-D-erythritol 4-phosphate Cytidyltransferase (IspD) from Mycobacterium tuberculosis H37Rv

  • Shi, Wenjun;Feng, Jianfang;Zhang, Min;Lai, Xuhui;Xu, Shengfeng;Zhang, Xuelian;Wang, Honghai
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.911-920
    • /
    • 2007
  • Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the leading infectious diseases to humans. It is urgent to discover novel drug targets for the development of antitubercular agents. The 2-C-methyl-Derythritol-4-phosphate (MEP) pathway for isoprenoid biosynthesis has been considered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. MEP cytidyltransferase (IspD), the third-step enzyme of the pathway, catalyzes MEP and CTP to form 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) and PPi. In the work, ispD gene from M. tuberculosis H37Rv (MtIspD) was cloned and expressed. With N-terminal fusion of a histidine-tagged sequence, MtIspD could be purified to homogeneity by one-step nickel affinity chromatography. MtIspD exists as a homodimer with an apparent molecular mass of 52 kDa. Enzyme property analysis revealed that MtIspD has high specificity for pyrimidine bases and narrow divalent cation requirements, with maximal activity found in the presence of CTP and $Mg^{2+}$. The turnover number of MtIspD is $3.4 s^{-1}$. The Km for MEP and CTP are 43 and $92{\mu}M$, respectively. Furthermore, MtIspD shows thermal instable above $50^{\circ}C$. Circular dichroism spectra revealed that the alteration of tertiary conformation is closely related with sharp loss of enzyme activity at higher temperature. This study is expected to help better understand the features of IspD and provide useful information for the development of novel antibiotics to treat M. tuberculosis.

Src Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyc1ooxygenase-2 Expression in Articular Chondrocytes via p38 Kinase-dependent Pathway

  • Yu, Seon-Mi;Lee, Won-Kil;Yoon, Eun-Kyung;Lee, Ji-Hye;Lee, Sun-Ryung;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.204-210
    • /
    • 2006
  • Background: Nitric oxide (NO) in articular chondrocytes regulates dedifferentiation and inflammatory responses by modulating MAP kinases. In this study, we investigated whether the Src kinase in chondrocytes regulates NO-induced dedifferentiation and cyclooxygenase-2 (COX-2) expression. Methods: Primary chondrocytes were treated with various concentrations of SNP for 24 h. The COX-2 and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ was determined by using a $PGE_2$ assay kit. Expression and distribution of p-Caveolin and COX-2 in rabbit articular chondrocytes and cartilage explants were determined by immunohistochemical staining and immunocytochemical staining, respectively. Results: SNP treatment stimulated Src kinase activation in a dose-dependent manner in articular chondrocytes. The Src kinase inhibitors PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine], a significantly blocked SNP-induced p38 kinase and caveolin-1 activation in a dose-dependent manner. Therefore, to determine whether Src kinase activation is associated with dedifferentiation and/or COX-2 expression and $PGE_2$ production. As expected, PP2 potentiated SNP-stimulated dedifferentiation, but completely blocked both COX-2 expression and $PGE_2$ production. And also, levels of p-Caveolin and COX-2 protein expression were increased in SNP-treated primary chondrocytes and osteoarthritic and rheumatoid arthritic cartilage, suggesting that p-Caveolin may playa role in the inflammatory responses of arthritic cartilage. Conclusion: Our previously studies indicated that NO caused dedifferentiation and COX-2 expression is regulated by p38 kinase through caveolin-1 (1). Therefore, our results collectively suggest that Src kinase regulates NO-induced dedifferentiation and COX-2 expression in chondrocytes via p38 kinase in association with caveolin-1.

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.