• Title/Summary/Keyword: 2-cell embryos

Search Result 935, Processing Time 0.029 seconds

Effect of $eta$-Mercaptoethanol and Cysteamine with Buffalo Rat Liver Cells(BRLC) on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos ($eta$-Mercaptoethanol과 Cysteamine 첨가와 Buffalo Rat 간세포 공동배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향)

  • 박동헌;양부근;황환섭;정희태;박춘근;김종복;김정익
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.277-282
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of thiol compounds, $\beta$-mercaptoethanol($\beta$-ME) and cystearrone with buffalo rat liver cell(BRLC) co-culture on the development and intracellular glutathione(GSH) concentrations of bovine embryos produced by in vitro inaturation(IVM) and in vitro fertilization(IVF). Bovine IVM /IVF embryos developed to 2~8 cell stage were co-cultured with BRLC in GRlaa with or without thiol compounds. The developmental rate beyond morulae stage in CRlaa containing 0, 10,25 and 50$\pi$M $\beta$-ME with BRLG were 63.0, 74.0, 72.3 and 77.1%, respectively. And the developmental rate with 0, 25, 50 and 75$\pi$M cystearnine with BRLC were 69.6, 77.6, 81.0 and 76.8%, respectively. The developmental rate beyond morulae stage of GRlaa containing thiol compound with BRLG group was higher than that of control group. The intracellular GSH concentrations of blastocysts cultured for 5 days in GRlaa containing 0 and 50$\pi$M $\beta$-ME or cysteamine with BRLG were 81.2 and 86.4, 83.2 and 84.2pM, respectively. The intracellular GSH concentrations of blastocysts in GRlaa containing thiol compounds with BRLG was slightly higher than that of control group The cell numbers of blastocysts were not difference in all experimental groups. These results indicate that thiol compounds with BRLG co-culture was increased the percentage of developed into morulae and blastocysts, and intracellular GSII concentrations of blastocysts embryos.

  • PDF

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

Effect of Phosphate, Amino Acid, and BSA on in vitro Development of Mammalian Embryo in Chemically Defined Culture Medium (한정 배양액에서 포유동물 수정란의 체외 발생에 인, 아미노산 및 BSA가 미치는 영향)

  • 김종흥;김병기
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.204-212
    • /
    • 1996
  • The aim of this study was to evaluate the effects of phosphate, aimno acid, and BSA on in vitro development of mammalian embryos. In vitro-matured and -fertilized(IVM/IVF) bovine embryos were cultured in simple, chemically defined, protein-free medium(mTLP-PVA0. When the phosphate concentration of mTLP-PVA supplemented with 19 amino acid were adjusted to 0.0, 0.10, 0.35, 1.05 and 2.10mM by the concentration of sodium phoshpate, there were no significant different in development ability of IVM/IVF bovine embryos cultured in the medium containing from 0.00 to 1.05mM phosphate until 48 hours post-insemination, However, proportion of embryos developing to $$8-cell and morula at 96 and 144 hours post- insemination, respectively, was significantly increased in the medium with o.35 mM phosphate(p<0.05). There was significant difference between O.10(18%)-0.35(24%)mM phosphate and 1.05(13%)-2.10(1%)mM phosphate in supporting development to blastocyst(p<0.05). When IVM/IVF bovine embryos were cultured in the medium supplemented with 19 amino acids, significant different was observed in the proporton of embryos reaching $$8-cell(49-50%), morula(38-40%) and blastocyst (29-32%) stages at 96, 144, and 192 hours post-insemination, respectively(p<0.05). Glutamine alone had no benefit on embryo development. When BSA was added to mTLP-PVA with 0.35mM phosphate, glutamine and 19 amino acids at 8, 48, 120 hours post-insemination, BSA significantly enhanced the development ability ofb embryos reaching $$2-cell (74-77%), $$8-cell (49-53%), morula(43-47%), and blastocyst(38-42%) stages at 48, 96, 144, and 192 hours post-insemination, respectively, regardless of the time of BSA addition.

  • PDF

Production of hGCSF and GFP Co-Expressed Transgenic Cow Embryo by Somatic Cell Nuclear Transfer Technique (체세포 핵치환 기술을 이용한 hGCSF와 GFP 유전자 동시발현 형질전환 소 배아 생산)

  • Yang, Jung Seok;Joe, So Young;Koo, Bon-Chul;Heo, Young-Tae;Lee, Su Min;Kang, Man-Jong;Song, Hyuk;Ko, Dae Hwan;Uhm, Sang Jun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.219-224
    • /
    • 2015
  • The purpose of this study is to develop transgenic cell line expressing targeted human granulocyte colony stimulating factor (hGCSF) and green fluorescence protein (GFP) genes as well as production of Somatic Cell Nuclear Transfer (SCNT) embryos derived from co-expressed transgenic donor cells. Constructed pPiggy-mWAP-hGCSF-EF1-GFP vector was chemically transfected into bovine fetus cells and then, only GFP expressed cells were selected as donor cells for SCNT. Cleavage and blastocyst rates of parthenogenetic, SCNT embryos using non-TG cell and hGCSF-GFP dual expressed SCNT embryos were examined (cleavage rate: $78.0{\pm}2.8$ vs. $73.1{\pm}3.2$ vs. $70.4{\pm}4.3%$, developmental rate: $27.2{\pm}3.2$ vs. $21.9{\pm}3.1$ vs. $17.0{\pm}2.9%$). Result indicated that cleavage and blastocyst rates of TG embryos were significantly lower (P<0.05) than those of parthenogenetic and non-TG embryos, respectively. In this study, we successfully produced hGCSF-GFP dual expressed SCNT embryos and cryopreserved to produce transgenic cattle for bioreactor system purpose. Further process of our research will transfer of transgenic embryos to recipients and production of hGCSF secreting cattle.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture

  • Jang, H.Y.;Jung, Y.S.;Cheong, H.T.;Kim, J.T.;Park, C.K.;Kong, H.S.;Lee, H.K.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.980-987
    • /
    • 2008
  • The objective of this study was to investigate the effects of cell status of BOEC on development of bovine IVM/IVF embryos and gene expression in BOEC before or after culturing of embryos. The developmental rates beyond morula stage in the BOEC co-culture group was significantly higher than in the control group (p<0.05). In particular, blastocyst production in the BOEC co-culture group (28.3%) was dramatically increased compared with the control group (7.2%). In the in vitro development of bovine IVM/IVF embryos according to cell status, the developmental rates beyond morula stage in the primary culture cell (PCC) co-culture group were the highest of all experimental groups. Expression of genes related to growth (TGF-${\beta}$ EGF and IGFBP), apoptosis (Bax, Caspase-3 and p53) and antioxidation (CuZnSOD, MnSOD, Catalase and GPx) in different status cells of BOEC for embryo culture was detected by RT-PCR. While EGF gene was detected in isolated fresh cells (IFC) and PCC, TGF-${\beta}$ and IGFBP were found in IFC or PCC after use in the embryo culture, respectively. Caspase-3 and Bax genes were detected in all experimental groups regardless of whether the BOEC was used or not used in the embryo culture. However, p53 gene was found in IFC of both conditions for embryo culture and in frozen/thawed culture cells (FPCC) after use in the embryo culture. Although antioxidant genes examined were detected in all experimental groups before using for the embryo culture, these genes were not detected after use. This study indicated that the BOEC co-culture system used for in vitro culture of bovine IVF embryos can increase the developmental rates, and cell generations and status of BOEC might affect the in vitro development of bovine embryos. The BOEC monolayer used in the embryo culture did not express the growth factors (TGF-${\beta}$ and EGF) and enzymatic antioxidant genes, thereby improving embryo development in vitro.

Effect of Culture Medium and Additive on the Development of Bovine IVM/IVF Embryos (체외배양액과 첨가물질이 소 체외수정란의 체외발육에 미치는 효과)

  • 박동헌;황환섭;정희태;박춘근;김정익;김종복;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 1996
  • The objective of this study were to investigate the effects of culture media and additives on the development of bovine in vitro matured(IVM) and in vitro fertilized(IVF) oocytes. In experiment 1, bovine oocytes were cultured in droplets of TC 199 supplemented with 10% fetal bovine serum(FBS) with or without hormones (5$\mu\textrm{g}$/ml FSH, 5$\mu\textrm{g}$/ml LH, 1$\mu\textrm{g}$/ml E2). Cleavage rates of embryos cultured for 40~44hrs after IVF were higher when embryos were cultured in TC 199 supplemented hormones (68.1%, 921/35) than without hormones (52.7%, 77/146), but the percentages of development beyond morulae stage were not difference (20.7%, 19.4%). In experiment 2, the effects of various media such as TC 199, synthetic oviduct fluid(SOF), CR1aa with different energy source (fatal bovine serum, FBS; bovine serum albumin, BSA) on developmental capacity of IVM/IVF bovine embryos were investigated. The developmental rates into morulae and blastocysts were 27.1, 10.7, 6.3 and 0%, respecitvely, in CR1aa plus 3mg/ml BSA, SOF plus 10% FBS, TC 199 plus 10% FBS, SOF plus 3mg/ml BSA. In experiment 3, the comparisons of bovine embryos developed to morulae and blastocysts in different culture media (TC 199, SOF, CR1aa, Menezo's B2) were investigated. The developmental capacity beyond morulae stage were 32.9, 26.6, 11.1 and 7.1%, respectively, in Menezo's B2 plus BSA, CR1aa plus BSA, SOF plus BSA, TC 199 plus FBS medium. The cell numbers of the blastocyst were not different in different cultrue media. In experiment 4, bovine embryos were co-cultured with vobine oviduct epithelial cells(BOEC) in TC 199 plus FBS, SOF plus BSA, CR1aa plus BSA, Menezo's B2 plus BSA. The morula and blastocyst rates were 44.7, 32.9, 26.0 and 23.3%, respectively, in CR1aa TC 199, SOF, and Menezo's B2 medium. The cell numbers of the blastocyst were similar to those of blastocyst developed in different culture media.

  • PDF

Effect of $Ca^{2+}$ Concentration in Fusion Medium on the Fusion, Nuclear Morphology and Development of Bovine Somatic Cell Nuclear Transfer Embryos (세포 융합액 중의$Ca^{2+}$ 농도가 소 체세포 핵이식란의 융합, 핵형 및 체외발육에 미치는 영향)

  • 조재원;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • This study was conducted to investigate the effect of $Ca^{2+}$ concentration in fusion medium on the fusion, nuclear morphology and the development of bovine somatic cell nuclear transfer embryos. Bovine skin cells were transferred into an enucleated oocyte and fused with cytoplasm in the fusion medium containing with 0.05 to 1.0 mM Cacl$_2$. Nuclear transfer embryos were activated with a combination of A23187 and cycloheximide. Nuclear transfer embryos were fixed at 3 h after fusion or cultured for 7 ~8 days. Fusion rate was significantly (P<0.01) increased by increasing the $Ca^{2+}$ concentrations in the fusion medium from 0.05 mM (56.6%) to 0.5 mM (50.1%) and 1.0 mM (84.3%). More than 80% of reconstituted embryos underwent premature chromosome condensation (PCC) with 0.05, 0.1 mM CaCl$_2$, whereas 54.5% and 59.3% of embryos formed pronucleus (PN) directly without PCC in the 0.5 and 1.0 mM CaCl$_2$, groups. Blastocyst formation rates were significantly (P<0.05) different between 0.1 mM and 1.0 mM CaCl$_2$groups. From the present result, it is suggested that the elevated $Ca^{2+}$ concentrations in fusion medium can enhance the fusion and blastocyst formation rates of bovine nuclear transfer embryos.bryos.

Studies on the culture of bovine nuclear transplant embryos derived in vitro fertilization (체외수정 유래 소 핵이식란의 배양에 관한 연구)

  • Hwang, Woo-suk;Jo, Choong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.179-185
    • /
    • 1995
  • The fusion rates of nuclear transplant embryos with various DC voltage were 55.6-79.2%. The significantly higher fusion rates of nuclear transplant embryos were achieved at the electric field strenght of DC 1.0-2.0kV/cm(72.0-79.2%) than DC 0.75kV/cm(55.6%, P<0.05). No significant differences in the percentage of embryos that cleaved(48.1, 55.4 and 42.6% respectively) and the percentage of cleaved embryos that developed to morulae/blastocyst(1.9, 5.3 and 1.9% respectively) could be found among the three types of in vitro culture system (Granulosa cell, BOEC co-culture and SOF, P>0.01). The age of the recipient cytoplast(30 vs 40hr) had no effect on the fusion rates and the rates of cleavage development(36.9 vs 44.1%, P>0.01).

  • PDF

Changes in Oxygen Consumption Rates of Embryos in Korean Cattle (한우 수정란의 발달 단계별 산소 소비량 변화)

  • Choe, Chang-Yong;Cho, Sang-Rae;Son, Jun-Kyu;Choi, Sun-Ho;Cho, Chang-Yeon;Kim, Jae-Bum;Kim, Sung-Jae;Kang, Da-Won;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. However, there was no standard criterion to measure the oxygen consumption of embryos. Here, we measured oxygen consumption of bovine embryos at various developmental stages was measured using a scanning electrochemical microscopy (SECM). We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell-stage to morula-stage), indicating that oxygen consumption reflects the cell number ($5.2{\sim}7.6{\times}10^{14}/mol\;s^{-1}$ versus $1.2{\sim}2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos ($4.0{\times}10^{14}/mol\;s^{-1}$ versus $2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro-derived bovine blastocyst-stage embryos (p>0.05). In the frozen-thawed blastocyst-stage embryos, live embryos showed significantly higher oxygen consumption than dead embryos ($4.7{\times}10^{14}/mol\;s^{-1}$ versus $1.0{\times}10^{14}/mol\;s^{-1}$, p<0.05). These results indicate that the measuring oxygen consumption by SECM can be used to evaluate bovine embryo quality.