• Title/Summary/Keyword: 2-cell embryo

Search Result 938, Processing Time 0.023 seconds

Effects of Serum and Gonadotropins in In-Vitro Maturation Medium on Nuclear Maturation, Development and Cell Numbers of Korean Native Cow Embryos (체외성숙용 배지에 혈청과 호르몬의 첨가가 한우 난포란의 핵성숙과 배발달 및 배반포의 세포수에 미치는 영향)

  • Park Y. S.;Kim J. M.;Park H. D.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2004
  • The main objective of this study was to examine the effects of serum and gonadotropins supplement during in vitro maturation(IVM) of bovine oocytes on nuclear maturation and embryo development, and we also examine the cell number. 1 . The first polar body(PB) extrusion rates of Korean native cow(KNC) oocytes matured in medium with FBS or gonadotropins were similar among treatment groups. The development rate to the blastocyst stage was significantly higher in the group of both supplement FBS and gonadotropins(26.0%) than in the group of non-supplement(9.9%) and gonadotropins (12.0%). The numbers of inner cell mass (ICM) and trophectoderm (TE) cells and total cell numbers of blastocysts were highest in the group of both supplement FBS and gonadotropins, and the number of ICM cells was increased by FBS supplementation (p<0.05). 2. The PB extrusion rates of KNC oocytes matured in medium with FBS in the different duration of IVM was significantly higher in the 0-18hr(63.1%) and in the 9-18hr(63.4%) group than in the 0-9hr.(37.4%) group (p<0.05). The embryo development rates did not differ among treatment groups. The numbers of TE cells and total cell numbers of blastocysts were similar among treatment groups, but the number of ICM cells of the 0-18h. group were significantly higher than the other treatment groups (p<0.05). The results indicate that although TCM199 alone can support bovine oocyte maturation and development to the blastocyst stage, a high quality of blastocysts can be produced from oocytes matured in medium containing serum and gonadotropins.

Effects of Different Infusion Frequency of Liquid Nitrogen on Human Embryo Development and Pregnancy Rates after Freezing and Thawing (인간 배아 동결 해빙시 액체질소의 분사속도가 배아 발달 및 임신에 미치는 영향)

  • Kim, Young-Ah;Seo, Seong-Seog;Kim, Mi-Ran;Hwang, Kyung-Joo;Park, Dong-Wook;Jo, Mi-Yeong;Ryu, Hee-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.4
    • /
    • pp.287-293
    • /
    • 2001
  • Objective : To investigate the efficacy of high infusion frequency of liquid nitrogen on pregnancy in human embryo after freezing and thawing. Materials and Methods: 150 infertile patients underwent 162 consecutive thawing-ET cycles. In the high infusion frequency group (Group A), 47 patients (50 cycles) underwent cryopreservation with high infusion frequency of liquid nitrogen. In the low infusion frequency group (Group B), 103 patients (112 cycles) underwent cryopreservation with low infusion frequency of liquid nitrogen. We analyzed the clinical characteristics, fertilization rates, development of embryo, good quality embryo ratio, implantation rates, and pregnancy rates between these two groups. Results: There was no difference between the groups with regard to clinical characteristics (mean age, infertility duration, infertility factors, hormone profile), mean number of oocyte retrieval, fertilization rates, and mean embryo number of transfers. The survival rates in group A was 64.9% (228 of 350 embryos), and among the 228 embryos 190 embryos (83.3%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 65 (34.2%), 29 (15.3%), 35 (18.4%), and 37 (19.5%) of grades 1, 2, 3, and above 4, respectively. The survival rates in group B was 63.8% (482 of 755 embryos), and among the 482 embryos 465 embryos (96.5%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 106 (22.8%), 94 (20.2%), 89 (19.1%), and 112 (24.1%) of grades 1, 2, 3, and above 4, respectively. There was no difference in embryo quality change after the freezing-thawing procedure between the groups. Implantation rates (31.1% vs. 34.3%) were not significant. However hCG positive rates in group A (40%) were higher than group B, but not statistically significant. Clinical pregnancy rate (26% vs. 25.9%), on going pregnancy rates (>20 weeks) were not significant (26% vs. 25%). Conclusion: We compared embryo quality change, survival rates, and pregnancy rates between high infusion frequency group and low infusion frequency group and the results were similar between the two groups. Therefore, high infusion frequency of liquid nitrogen for cryopreservation is a worthy method to preserve in human embryos.

  • PDF

Effects of In Vitro Fertilization Conditions of In Vitro Matured Cumulus-Intact Pig Oocytes on Embryo Development

  • Kim, Jae-Young;Lee, Eun-Ji;Park, Jin-Mo;Lee, Hong-Cheol;Park, Hum-Dai;Kim, Jae-Myeong
    • Journal of Embryo Transfer
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this study, we examined the effectiveness of in vitro fertilization of porcine immature oocytes on the embryo development of blastocysts or hatched blastocysts and the number of cells according to the in vitro fertilization conditions. In the in vitro fertilization of in vitro matured porcine oocytes, there were no significant differences between treatment groups regarding fertilization rate, blastocyst rate, and embryo development of hatched blastocysts according to the storage periods of liquid sperm of 24, 48, and 72 hours. The embryo development rate of hatched blastocysts after the fertilization according to different spermatozoa concentrations ($0.4{\times}10^5$, $1.2{\times}10^5$, and $3.6{\times}10^5$ cells/ml) showed the highest rate in the group with a spermatozoa concentration of $1.2{\times}10^5$ cells/ml; in particular, this rate was significantly higher than that in the $0.4{\times}10^5$ cells/ml group (p<0.05). The total number of blastocysts cells as well as trophectoderms (TE) that developed in each treatment group were also significantly higher in the $1.2{\times}10^5$ cells/ml group than in any other groups (p<0.05). In contrast, the embryo development rate of blastocysts according to different co-incubation periods of sperm and oocyte (1, 3, and 6 hr) was high in the 6-hour group; in particular, the rate was significantly higher than that of the I-hour group (p<0.05). Furthermore, the total number of oocytes cells and TEs that developed was significantly higher in the 6-hour group than any other group (p<0.05). In this study, the most effective treatment conditions for porcine embryo development and high cell number were found to be as follows: a sperm storage period of less than 72 hours, a spermatozoa concentration of $1.2{\times}10^5$ cells/ml, and a 6-hour co-incubation period for sperm and ooocyte.

Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro

  • Huang, Ziqiang;Pang, Yunwei;Hao, Haisheng;Du, Weihua;Zhao, Xueming;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1420-1430
    • /
    • 2018
  • Objective: Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and is considered one of the most promising bioactive compounds in green tea because of its strong antioxidant properties. However, the protective role of EGCG in bovine oocyte in vitro maturation (IVM) has not been investigated. Therefore, we aimed to study the effects of EGCG on IVM of bovine oocytes. Methods: Bovine oocytes were treated with different concentrations of EGCG (0, 25, 50, 100, and $200{\mu}M$), and the nuclear and cytoplasmic maturation, cumulus cell expansion, intracellular reactive oxygen species (ROS) levels, total antioxidant capacity, the early apoptosis and the developmental competence of in vitro fertilized embryos were measured. The mRNA abundances of antioxidant genes (nuclear factor erythriod-2 related factor 2 [NRF2], superoxide dismutase 1 [SOD1], catalase [CAT], and glutathione peroxidase 4 [GPX4]) in matured bovine oocytes were also quantified. Results: Nuclear maturation which is characterized by first polar body extrusion, and cytoplasmic maturation characterized by peripheral and cortical distribution of cortical granules and homogeneous mitochondrial distribution were significantly improved in the $50{\mu}M$ EGCG-treated group compared with the control group. Adding $50{\mu}M$ EGCG to the maturation medium significantly increased the cumulus cell expansion index and upregulated the mRNA levels of cumulus cell expansion-related genes (hyaluronan synthase 2, tumor necrosis factor alpha induced protein 6, pentraxin 3, and prostaglandin 2). Both the intracellular ROS level and the early apoptotic rate of matured oocytes were significantly decreased in the $50{\mu}M$ EGCG group, and the total antioxidant ability was markedly enhanced. Additionally, both the cleavage and blastocyst rates were significantly higher in the $50{\mu}M$ EGCG-treated oocytes after in vitro fertilization than in the control oocytes. The mRNA abundance of NRF2, SOD1, CAT, and GPX4 were significantly increased in the $50{\mu}M$ EGCG-treated oocytes. Conclusion: In conclusion, $50{\mu}M$ EGCG can improve the bovine oocyte maturation, and the protective role of EGCG may be correlated with its antioxidative property.

Sex Linked Developmental Rate Differences in Murrah Buffalo (Bubalus bubalis) Embryos Fertilized and Cultured In Vitro

  • Sood, S.K.;Chauhan, M.S.;Tomer, O.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • The aim of the present study was to determine the effect of paternal sex chromosome on early development of buffalo embryos fertilized and cultured in vitro. Embryos were produced in vitro from abattoir derived buffalo oocytes. The cleaved embryos were cocultured with buffalo oviductal epithelial cells and evaluated on day 7 under the phase contrast microscope to classify development. The embryos which reached the morula/blastocyst stage were fast developing, the embryos which were at 16-32 cell stage were medium developing and the embryos below 16 cell stage were slow developing. The embryos which showed some fragmentation in the blastomeres or degenerated blastomeres, were degenerating. Sex of emberyos (n=159) was determined using PCR for amplification of a male specific BRY. 1 (301 bp) and a buffalo specific satellite DNA (216 bp) fragments. The results thus obtained show that 1) X and Y chromosome bearing sperms fertilize oocytes to give almost equal numbers of cleaved XX and XY embryos, 2) male embryos develop faster than female embryos to reach advanced stage and 3) degeneration of buffalo embryos is not linked with the paternal sex chromosome. We suggest that faster development of males is due to differential processing of X and Y chromosome within the zygote for its activation and / or differential expression of genes on paternal sex chromosome sex chromosome during development of buffalo embryos fertilized and cultured in vitro which may be attributed to a combination of genetic and environmental factors.

Correlations between embryo morphokinetic development and maternal age: Results from an intracytoplasmic sperm injection program

  • Faramarzi, Azita;Khalili, Mohammad Ali;Mangoli, Esmat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.3
    • /
    • pp.119-124
    • /
    • 2019
  • Objective: It is widely accepted that aging decreases women's fertility capacity. The aim of this study was to assess correlations between maternal age and the morphokinetic parameters and cleavage pattern of embryos. Methods: The morphokinetics of embryos derived from women < 30, 30-35, 36-40, and > 40 years of age were compared retrospectively in terms of time of second polar body extrusion, time of pronuclei appearance, time of pronuclei fading, and time of two to eight discrete cells (t2-t8). Furthermore, abnormal cleavage patterns such as uneven blastomeres at the two-cell stage, cell fusion (Fu), and trichotomous mitoses (TM) were assessed. Results: Only t5 occurred later in women aged 36-40 and > 40 years when compared with those aged < 30 and 30-35 years (p< 0.001). Other morphokinetic timing parameters, as well the presence of uneven blastomeres, were comparable between the groups (p> 0.05). However, Fu and TM were more common in women aged > 40 years than in younger women (p< 0.001). Conclusion: Maternal age was correlated with the cleavage pattern of embryos. Therefore, evaluating embryo morphokinetics may contribute to optimal embryo selection, thereby increasing fertility in patients with advanced maternal age.

Study on the Sex-Ratio of Fast- and Slow-Developing Mouse Embryo (Mouse 초기배의 발육속도에 따른 성비에 관한 연구)

  • 이상영;양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.11 no.3
    • /
    • pp.218-222
    • /
    • 1987
  • This study was conducted using inbred ICR mice to investigate the sex-ratio of preimplantation mouse embryos. For the investigation of sex-ratio of mouse embryos, the karyotype of embryos collected at 70-72, 74-76, 78-80 and 82-84 hr after HCG injection was analyzed by chromosomal analysis. Eight-cell embryos were cultrued up to blastocyst stage, then divided them into three groups(fast-, intermediate- and slow-) according to the blastocoel formation. The sex-ratio was also investigated by chromosomal analysis. 1. The highest apperance of eight-cell and morula was observed at the embryos collected respectively at 66-68 hr(84.6%) and 82-84 hr(79.3%) compared to any other group. 2. The successful rate of embryos sexing at 4-, 8-cell and morula stage were 23.1% (3/13), 42.1%(138/328) and 32.6%(47/141), respectively. The respective sex ratios (female vs male) of 4-, 8-cell and morula were 66.7:33.3, 49.3:50.7 and 39.5:60.5. 3. Of the 476 eight-cell embryos cultured in vitro, 427(89.7%) embryos were developed to the blastocysts and the number of fast-, intermediate- and show-developing embryos were 139, 144 and 144, respectively. 4. Female to male ratios fo fast-, intermediate- and slow-developing group were 23.0:77.0, 55.2:44.8 and 73.8:26.2, respectively. Significantly higher (P<0.05) number of female (48/65;73.8%) was observed in the group of slow-developing embryo than that out of total number of embryos(82/188;43.6%).

  • PDF

Effect of Insulin Supplement on Development of Porcine Parthenogenetic Embryos

  • Yu, Youngkwang;Roy, Pantu Kumar;Min, Kyuhong;Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Fang, Xun;Salih, MB;Cho, Jongki
    • Journal of Embryo Transfer
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • This study is performed to evaluate the effect of insulin in the porcine parthenogenetic embryo development. In porcine embryo culture, insulin is helpful factor in the process of embryo development. To identify this, insulin is used in pig embryos development. Therefore, this study was performed to investigate the effect of insulin on early embryonic development in pigs. For that, insulin positive or negative (0, 10 ug/mL) was supplemented in the porcine IVM media and then compared two groups divided by the cytoplasm of the black groups and white ring groups based on the distribution of lipid material of the cell cytoplasm in microscope. In maturation rates of porcine oocytes, significant higher black group rates were shown in the insulin positive groups compared with other groups ($56.0{\pm}2.1$ vs $46.2{\pm}0.3$). In the embryo culture, black groups were showed the significant higher cleavage rates ($82.1{\pm}0.8$, $78.3{\pm}0.1$ vs $63.2{\pm}0.3$, $63.4{\pm}0.0$), and blastocyst formation rates ($15.5{\pm}3.6$, $16.6{\pm}0.4$ vs $11.7{\pm}1.3$, $7.4{\pm}0.2$) regardless of whether the addition of insulin. Also, black groups were showed higher cell number of blastocyst ($33.2{\pm}2.5$, $35.5{\pm}2.6$ vs $31.2{\pm}2.1$, $31.3{\pm}2.2$). In conclusion, supplement of insulin producing black group in vitro maturation, it was effective in vitro maturation and embryonic development of pig embryos.

The Effect of Equilibration Temperature and Exposure Time on the Ultrarapid Freezing of 1-cell Mouse Zygote (생쥐 1-세포기배의 초급속 동결에 있어서 평형 온도와 노출시간의 영향)

  • Chung, Duk-Soo;Kim, Hyung-Kuk;Park, In-Kook
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.3
    • /
    • pp.261-268
    • /
    • 1998
  • The present study was to assess the effect of ultrarapid freezing on the development of 1-cell mouse zygote using cryoprotectants, DMSO (dimethyl sulfoxide) or PROH (1,2-propanediol). We investigated the effect of the type and concentration of cryoprotectant, and of the temperature and time of prefreezing equilibration on their capacity to develop to the blastocyst stage in vitro. The concenration, the equilibration temperature, and the exposure time seemed to serve as an important factor in ultrarapid freezing of 1-cell mouse zygotes. In addition to the exposure time and the concentration of cryoprotectant appeared to playa key role in the development of the embryo. In general, the development of the embryo was more effective at $3^{\circ}C$ than $23^{\circ}C$ and 4.5 M than 3 M for 3 to 5 minutes. At $23^{\circ}C$ the development of the embryo was stimulated by DMSO while at $3^{\circ}C$ it was stimulated by PROH. Thus it has been suggested that there exists a correlation between the concentration of cryoprotectants and exposure time in the development of the embryo. In conclusion, we found that for ultrarapid freezing of mouse 1-cell embryos in DMSO, or PROH-based solution, viability shown optimum depending on the cryoprotectant, the concentration of the cryoprotectant and on the temperature and the duration of equilibration.

  • PDF

Effect of Macromolecules in Maturation Medium on Oocyte Maturation and Embryonic Development after Parthenogenesis and Nuclear Transfer in Pigs

  • You, Jin-Young;Kim, Jin-Young;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • The objective of this study was to examine the effect of macromolecule in a maturation medium on nuclear maturation, intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were cultured in maturation medium that was supplemented with each polyvinyl alcohol (PVA), pig follicular fluid (pFF) or newborn calf serum (NBCS) during the first 22 h and the second 22 h. Oocyte maturation was not influenced by the source of macromolecules during in vitro maturation (IVM). Embryo cleavage and cell number in blastocyst after PA was altered by the source of macromolecule but no difference was observed in blastocyst formation among treatments. Oocytes matured in PVA-PVA medium showed lower rates of oocyte-cell fusion (70.4% vs. 77${\sim}$82%) and embryo cleavage (75% vs. 86${\sim}$90%) after SCNT than those matured in other media but blastocyst formation was not altered (13${\sim}$27%) by different macromolecules. pFF added to IVM medium significantly increased the intracellular GSH level of oocytes compared to PVA and NBCS, particularly when pFF was supplemented during the first 22 h of IVM. Our results demonstrate that source of macromolecule in IVM medium influences developmental competence of oocytes after PA and SCNT, and that pFF supplementation during the early period (first 22 h) of IVM increases intracellular GSH level of oocytes.