• Title/Summary/Keyword: 2-Methacryloyloxyethyl Phosphorylcholine(MPC)

Search Result 11, Processing Time 0.015 seconds

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.