• Title/Summary/Keyword: 2-Dimensional

Search Result 15,171, Processing Time 0.048 seconds

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.

Effects of Spatio-temporal Features of Dynamic Hand Gestures on Learning Accuracy in 3D-CNN (3D-CNN에서 동적 손 제스처의 시공간적 특징이 학습 정확성에 미치는 영향)

  • Yeongjee Chung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • 3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Earth pressures acting on vertical circular shafts considering arching effects in c-$\phi$ soils : II. Lab. Model Tests (c-$\phi$ 지반에서의 아칭현상을 고려한 원형수직터널 토압 : II. 실내 모형실험)

  • Kim, Do-Hoon;Cha, Min-Hyuck;Lee, Dea-Su;Kim, Kyung-Ryeol;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.129-144
    • /
    • 2010
  • The earth pressure acting on the vertical shaft is less than that acting on the retaining wall due to three dimensional arching effect. Thus, it might be essential to estimate the earth pressure actually acting on the shaft when designing the vertical shaft. In this paper, large-sized model tests were conducted as Part II of companion papers to verify the newly suggested earth pressure equation proposed by Kim et al. (2009: Part I of companion papers) that can be used when designing the vertical shaft in cohesionless soils as well as in c-$\phi$ soils and multi-layered soils. The newly developed model test apparatus was designed to be able to simulate staged shaft excavation. Model tests were performed by varying the radius of vertical shaft in dry soil. Moreover, tests on c-$\phi$ soils and on multi-layered soils were also performed; in order to induce apparent cohesion to the cohesionless soil, we add some water to the dry soil to make the soil partially-saturated before depositing by raining method. Experimental results showed a load transfer from excavated ground to non-excavated zone below dredging level due to arching effect when simulating staged excavation. It was also found that measured earth pressure was far smaller than estimated if excavation is done at once; the final earth pressure measured after performing staged excavation was larger and matched with that estimated from the newly proposed equation. Measured results in c-$\phi$ soils and in multi-layered soils showed reduction in earth pressures due to apparent cohesion effect and showed good matches with analytical results.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

Teacher Perception about Barriers to Consultation with School Counselors (담임교사가 인식한 학교상담자와의 자문 관계에서의 장애요인 탐색)

  • Kim, Ji-Yeon;Park, Altteuri
    • Korean Journal of School Psychology
    • /
    • v.16 no.1
    • /
    • pp.39-63
    • /
    • 2019
  • The purpose of this study was to explore how teachers perceive barriers to consultation with school counselors. For this purpose, the opinions of 16 teachers working in Seoul, Gyeonggi, Incheon, Chungcheong, and Daegu were collected through one-on-one interviews and qualitatively analyzed using the concept-mapping method. A second set of data was gathered to classify the similarity and importance of the teachers' statements through one-on-one interviews or the mail. The data was analyzed using multidimensional scaling and hierarchical cluster analyses. The results were as follows. The barriers to the consultation with school counselors as perceived by teachers were represented in 51 statements. Dimensional statement analysis revealed two dimensions: (a) 'School counseling's traits - School counselors' traits' and (b) 'Psychological difficulties - Environmental difficulties' Hierarchical cluster analysis identified 5 clusters: 'The responsibilities as homeroom teachers interfere with communication with counselors', 'Teachers lack of awareness of their ability to seek consultation with counselors', 'Teachers lack of trust in school counselors', 'Perceptions of the school counselors' role and lack of relevant experience with school counselors prevent teachers from seeking consultation', and 'School counselors are overworked due to the school counseling environment' The most important cluster was 'Teachers lack of trust in school counselors'.

Volume and Mass Doubling Time of Lung Adenocarcinoma according to WHO Histologic Classification

  • Jung Hee Hong;Samina Park;Hyungjin Kim;Jin Mo Goo;In Kyu Park;Chang Hyun Kang;Young Tae Kim;Soon Ho Yoon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.464-475
    • /
    • 2021
  • Objective: This study aimed to evaluate the tumor doubling time of invasive lung adenocarcinoma according to the International Association of the Study for Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) histologic classification. Materials and Methods: Among the 2905 patients with surgically resected lung adenocarcinoma, we retrospectively included 172 patients (mean age, 65.6 ± 9.0 years) who had paired thin-section non-contrast chest computed tomography (CT) scans at least 84 days apart with the same CT parameters, along with 10 patients with squamous cell carcinoma (mean age, 70.9 ± 7.4 years) for comparison. Three-dimensional semiautomatic segmentation of nodules was performed to calculate the volume doubling time (VDT), mass doubling time (MDT), and specific growth rate (SGR) of volume and mass. Multivariate linear regression, one-way analysis of variance, and receiver operating characteristic curve analyses were performed. Results: The median VDT and MDT of lung cancers were as follows: acinar, 603.2 and 639.5 days; lepidic, 1140.6 and 970.1 days; solid/micropapillary, 232.7 and 221.8 days; papillary, 599.0 and 624.3 days; invasive mucinous, 440.7 and 438.2 days; and squamous cell carcinoma, 149.1 and 146.1 days, respectively. The adjusted SGR of volume and mass of the solid-/micropapillary-predominant subtypes were significantly shorter than those of the acinar-, lepidic-, and papillary-predominant subtypes. The histologic subtype was independently associated with tumor doubling time. A VDT of 465.2 days and an MDT of 437.5 days yielded areas under the curve of 0.791 and 0.795, respectively, for distinguishing solid-/micropapillary-predominant subtypes from other subtypes of lung adenocarcinoma. Conclusion: The tumor doubling time of invasive lung adenocarcinoma differed according to the IASCL/ATS/ERS histologic classification.

Characterization of Volatile Compounds in Donkey Meat by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Chemometrics

  • Mengmeng Li;Mengqi Sun;Wei Ren;Limin Man;Wenqiong Chai;Guiqin Liu;Mingxia Zhu;Changfa Wang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.165-177
    • /
    • 2024
  • Volatile compounds (VOCs) are an important factor affecting meat quality. However, the characteristic VOCs in different parts of donkey meat remain unknown. Accordingly, this study represents a preliminary investigation of VOCs to differentiate between different cuts of donkey meat by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics analysis. The results showed that the 31 VOCs identified in donkey meat, ketones, alcohols, aldehydes, and esters were the predominant categories. A total of 10 VOCs with relative odor activity values ≥1 were found to be characteristic of donkey meat, including pentanone, hexanal, nonanal, octanal, and 3-methylbutanal. The VOC profiles in different parts of donkey meat were well differentiated using three- and two-dimensional fingerprint maps. Nine differential VOCs that represent potential markers to discriminate different parts of donkey meat were identified by chemometrics analysis. These include 2-butanone, 2-pentanone, and 2-heptanone. Thus, the VOC profiles in donkey meat and specific VOCs in different parts of donkey meat were revealed by HS-GC-IMS combined with chemometrics, whcih provided a basis and method of investigating the characteristic VOCs and quality control of donkey meat.

Identification of Autoantigens in Pediatric Gastric Juices

  • Hee-Shang Youn;Jin-Su Jun;Jung Sook Yeom;Ji Sook Park;Jae-Young Lim;Hyang-Ok Woo;Jung-Wook Yang;Seung-Chul Baik;Woo-Kon Lee;Ji-Hyun Seo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.1
    • /
    • pp.15-25
    • /
    • 2024
  • Purpose: This study aimed to investigate the presence of autoantigens in the gastric juices of children. Methods: Gastric juice and serum samples were obtained from 53 children <15 years of age who underwent gastric endoscopy. Among these, 8, 22, and 23 participants were in the age groups 0-5, 6-10, and 11-15 years, respectively. These samples were analyzed using two-dimensional electrophoresis (2-DE), immunoblot analysis, and matrix-assisted laser desorption ionization-time of-flight mass spectrometry. Furthermore, we reviewed the histopathological findings and urease test results and compared them with the results of 2-DE and immunoblot analysis. Results: There were no statistically significant differences in urease test positivity, grades of chronic gastritis, active gastritis, or Helicobacter pylori infiltration of the antrum and body among the three age groups. Three distinct patterns of gastric juice were observed on 2-DE. Pattern I was the most common, and pattern III was not observed below the age of 5 years. Histopathological findings were significantly different among active gastritis (p=0.037) and H. pylori infiltration (p=0.060) in the gastric body. The immunoblots showed large spots at an approximate pH of 3-4 and molecular weights of 31-45 kDa. These distinct, large positive spots were identified as gastric lipase and pepsin A and C. Conclusion: Three enzymes, which are normally secreted under acidic conditions were identified as autoantigens. Further investigation of the pathophysiology and function of autoantigens in the stomach is required.

Imaging of Facial Nerve With 3D-DESS-WE-MRI Before Parotidectomy: Impact on Surgical Outcomes

  • Han-Sin Jeong;Yikyung Kim;Hyung-Jin Kim;Hak Jung, Kim;Eun-hye Kim;Sook-young Woo;Man Ki Chung;Young-Ik Son
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.860-870
    • /
    • 2023
  • Objective: The intra-parotid facial nerve (FN) can be visualized using three-dimensional double-echo steady-state water-excitation sequence magnetic resonance imaging (3D-DESS-WE-MRI). However, the clinical impact of FN imaging using 3D-DESS-WE-MRI before parotidectomy has not yet been explored. We compared the clinical outcomes of parotidectomy in patients with and without preoperative 3D-DESS-WE-MRI. Materials and Methods: This prospective, non-randomized, single-institution study included 296 adult patients who underwent parotidectomy for parotid tumors, excluding superficial and mobile tumors. Preoperative evaluation with 3D-DESS-WE-MRI was performed in 122 patients, and not performed in 174 patients. FN visibility and tumor location relative to FN on 3D-DESS-WE-MRI were evaluated in 120 patients. Rates of FN palsy (FNP) and operation times were compared between patients with and without 3D-DESS-WE-MRI; propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were used to adjust for surgical and tumor factors. Results: The main trunk, temporofacial branch, and cervicofacial branch of the intra-parotid FN were identified using 3D-DESS-WE-MRI in approximately 97.5% (117/120), 44.2% (53/120), and 25.0% (30/120) of cases, respectively. The tumor location relative to FN, as assessed on magnetic resonance imaging, concurred with surgical findings in 90.8% (109/120) of cases. Rates of temporary and permanent FNP did not vary between patients with and without 3D-DESS-WE-MRI according to PSM (odds ratio, 2.29 [95% confidence interval {CI} 0.64-8.25] and 2.02 [95% CI: 0.32-12.90], respectively) and IPTW (odds ratio, 1.76 [95% CI: 0.19-16.75] and 1.94 [95% CI: 0.20-18.49], respectively). Conversely, operation time for surgical identification of FN was significantly shorter with 3D-DESS-WE-MRI (median, 25 vs. 35 min for PSM and 25 vs. 30 min for IPTW, P < 0.001). Conclusion: Preoperative FN imaging with 3D-DESS-WE-MRI facilitated anatomical identification of FN and its relationship to the tumor during parotidectomy. This modality reduced operation time for FN identification, but did not significantly affect postoperative FNP rates.