• Title/Summary/Keyword: 2-DE analysis

Search Result 1,210, Processing Time 0.029 seconds

Antimutagenic Activities of 24 Synthetic Flavones with The Salmonella Microsomal Assay

  • Laget, M.;De Meo, M.;Wallet, J.C.;Gaydou, E.M.;Guiraud, H.;Dumenil, G.
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.415-422
    • /
    • 1995
  • Twenty-four flavones were synthesized with various hydroxyl and/or methoxyl groups on A and B rings. Their antimutagenic properties were evaluated against ben:w(a)pyrene (BaP) and a pool of mutagenic urine concentrate (U) using a modified liquid incubation method of Ames test. The tester strain was Salmonella typhimurium TA98+S9 Mix. The antimutagenic activities were calculated by non linear regression analysis and the doses of flavones (in nmoles) required for a 50% reduction of induced revertants with BaP and U were defined as the inhibition doses (TEX>$ID_{508}{\;}and{\;}ID_{508}$ respectively). Seventeen flavones possessed significant antimutagenic activity against BaP. $ID_{508}$ ranged from 15.1 nmoles (F22) to 1000.6 nmoles (F13). Eighteen f1avones showed significant antimutagenic activity against U. $ID_{50U}$ ranged from 23.5 nmoles (F22) to 354.6 nmoles (F3). The 2',3',4'-trihydroxyflavone (F22, $ID_{508}=15.1$ nmoles, $ID_{50U}=23.5$ nmoles) and the 2',3',4',7-tetrahydroxyflavone (F20, $ID_{508}=37.8$ nmoles; $ID_{50U}=62.3$ nmoles) had antimutagenic activities similar to those of chlorophyllin ($ID_{508}=19.6$ nmoles and $ID_{50U}=44.2$ nmoles) and were evaluated against B(alP 7,8-dihydrodiol-9,10-epoxide. Against this last mutagen, the flavones which included three OH in B ring showed the highest activity and this property seemed independent of the substituent groups on A ring.

  • PDF

Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4

  • Romeo, Florencia;Spetter, Maximiliano J.;Moran, Pedro;Pereyra, Susana;Odeon, Anselmo;Perez, Sandra E.;Verna, Andrea E.
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.12
    • /
    • 2020
  • The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

A framework for accuracy improvement in protein 2-DE image analysis (정확도 향상을 위한 단백질 2-DE 이미지 정보 분석 프레임워크)

  • Jin, Yanhua;Shim, Jung Eun;Lee, Won Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.741-742
    • /
    • 2009
  • 단백질 2-DE 이미지 분석은 가장 널리, 가장 오랫동안 사용되고 있는 기술로서 샘플에 들어있는 수천 개에 달하는 단백질을 저한 비용으로 효과적으로 분리하는 장점을 가지고 있다. 하지만 단백질 자체가 가지고 있는 불안정성과 2-DE 실험이 가지고 있는 근본적인 문제점으로 인하여 2-DE 이미지 분석결과는 정확도가 낮아지게 된다. 따라서 이 논문에서는 데이터마이닝 기법을 사용한 "기준점 자동 추출 모듈"과 "확률기반 매칭 조정 모듈"로 구성된 이미지 정보 분석을 위한 프레임 워크를 제안하였으며 실제 데이터에 대한 실험을 통하여 제안한 방법의 타당성을 검증하였다.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

Comparative Proteome Analysis of Cyanidin 3-O-glucoside Treated Helicobacter pylori

  • Kim, Sa-Hyun;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.233-240
    • /
    • 2015
  • Some virulence proteins of Helicobacter pylori, such as vacuolating cytotoxic protein A (VacA) and cytotoxin-associated gene protein A (CagA) have been reported to be causative agents of various gastric diseases including chronic gastritis, gastric ulcer or gastric adenocarcinoma. The expression level of these virulence proteins can be regulated when H. pylori is exposed to the antibacterial agent, cyanidin 3-O-glucoside (C3G) as previously reported. In this study, we analyzed the quantitative change of various virulence proteins including CagA and VacA by C3G treatment. We used 2-dimensional electrophoresis (2-DE) to analyze the quantitative change of representative ten proteome components of H. pylori 60190 ($VacA^+/CagA^+$; standard strain of Eastern type). After 2-DE analysis, spot intensities were analyzed using ImageMaster$^{TM}$ 2-DE Platinum software then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). Next, we selected major virulence proteins of H. pylori among quantitatively meaningful ten spots and confirmed the 2-DE results by Western blot analysis. These results suggest that cyanidin 3-O-glucoside can modulate a variety of H. pylori pathogenic determinants.

Factors Associated With the Illness of Nursing Professionals Caused by COVID-19 in Three University Hospitals in Brazil

  • de Oliveira, Larissa Bertacchini;de Souza, Luana Mendes;de Lima, Fabia Maria;Fhon, Jack Roberto Silva;Puschel, Vilanice Alves de Araujo;Carbogim, Fabio da Costa
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.255-260
    • /
    • 2022
  • Background: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the importance of implementing strategic management that prioritizes the safety of frontline nurse professionals. In this sense, this research was aimed at identifying factors associated with the illness of nursing professionals caused by COVID-19 according to socio-demographic, clinical, and labor variables. Methods: A cross-sectional study was conducted in three Brazilian university hospitals with 859 nursing professionals, which include nurses, technicians, and nursing assistants, between November 2020 and February 2021. We present data using absolute and relative frequency. We used Chi-square test for hypothesis testing and multiple logistic regression for predictive analysis and chances of occurrence. Results: The rate of nursing professionals affected by COVID-19 was 41.8%, and the factors associated with contamination were the number of people in the same household with COVID-19 and obesity. Being a nurse was a protective factor when the entire nursing team was considered. The model is significant, and its variables represent 56.61% of the occurrence of COVID-19 in nursing professionals. Conclusion: Obesity and living in the same household as other people affected by COVID-19 increases the risk of contamination by this new coronavirus.

Comparison of Mathematical Models Applied to F1 Dairy Sheep Lactations in Organic Farm and Environmental Factors Affecting Lactation Curve Parameter

  • Angeles-Hernandez, J.C.;Albarran-Portillo, B.;Gomez Gonzalez, A.V.;Pescador Salas, N.;Gonzalez-Ronquillo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1119-1126
    • /
    • 2013
  • The objective of this study was to compare the goodness of fit of four lactation curve models: Wood's Gamma model (WD), Wilmink (WL), and Pollott's multiplicative two (POL2) and three parameters (POL3) and to determine the environmental factors affecting the complete lactation curve of F1 dairy sheep under organic management. A total of 5,382 weekly milk yields records from 150 ewes, under organic management were used. Residual mean square (RMS), determination coefficients ($R^2$), and correlation (r) analysis were used as an indicator of goodness of fit for each model. WL model best fitted the lactation curves as indicated by the lower RMS values (0.019), followed by WD (0.023), POL2 (0.025) and POL3 (0.029). The four models provided total milk yield (TMY) estimations that were highly correlated (0.93 to 0.97) with observed TMY (89.9 kg). The four models under estimated peak yield (PY), whereas POL2 and POL3 gave nearer peak time lactation estimations. Ewes lambing in autumn had higher TMY and showed a typical curve shape. Higher TMY were recorded in second and third lambing. Season of lambing, number of lambing and type of lambing had a great influenced over TMY shaping the complete lactation curve of F1 dairy sheep. In general terms WL model showed the best fit to the F1 dairy sheep lactation curve under organic management.

Optimization of a four-bar mechanism cyclic pitch control for a vertical axis wind turbine

  • Montenegro-Montero, Mariana;Richmond-Navarro, Gustavo;Casanova-Treto, Pedro
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2022
  • In this paper, the issue of pitch control in a vertical axis wind turbine was tackled. Programming the Actuator Cylinder model in MATLAB, a theoretical optimum pitch solution was found and then a classic four-bar mechanism was adapted to that theoretical solution to achieve a simple and elegant control of the pitch in the turbine. A simulation using the mechanism worked to find the optimum pitch cycles, where it was found that the mechanism would, in fact, increase the efficiency of the VAWT, by at least 11% and in the best case, over 35%. Another aspect that is studied is the possibility of self-start of the turbine by only changing the pitch on the blades. This analysis, however, proved that a further individual pitch control must be used to surpass the cogging torque. All analyses conducted were done for a specific wind turbine that is 2 m2 in the swept area.

Time history analysis of a tensile fabric structure subjected to different seismic recordings

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Chiumenti, Michele;Hernandez-Martinez, Alejandro
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.161-173
    • /
    • 2021
  • The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types ofstructures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results ofseismic stresses in the fabric, but not in the frame.