• 제목/요약/키워드: 2-D and 3-D Analyses

검색결과 1,123건 처리시간 0.031초

Thiazole 또는 Pyrazine유도성 Microsomal Epoxide Hydrolase의 순수정제: Epoxide Hydrolase-관련성 43 kDa 단백질의 유도증가 (Purification of Thiazole- and Pyrazine-inducible Microsomal Epoxide Hydrolase: Induction of Epoxide Hydrolase-related Novel 43 kDa Protein)

  • 김상건
    • 대한약리학회지
    • /
    • 제29권2호
    • /
    • pp.275-282
    • /
    • 1993
  • Microsomal epoxide hydrolase (mEH)은 epoxide형 중간대사물을 해독화하는 효소이다. 본 실험실에서는 thiazole 또는 pyrazine을 rat에 투여할 때 mEH mRNA수준이 증가되고 mEH가 유도증가한다는 것을 밝힌바 있다(Carcinogenesis, Kim et al, 1993). 본 연구에서는 Thiazole처리를 한 rat의 간 microsome 분획으로 부터 DEAE-cellulose column chromatography를 이용하여 mEH를 순수분리하였고, 이를 SDS-PAGE분석 및 N 말단 amino acid 서열분석으로 확인하였다. Pyrazine처리를 한 rat의 간 microsome분획에서는 mEH와 더불어 이와 관련된 43 kDa 단백질이 함께 정제되었다. 정제된 thiazole 유도성 mEH를 토끼에 주사하여 항체를 생산하였고, 이 항체를 이용한 immunoblot 분석을 하였을 때 간 microsome 분획의 mEH가 thiazole투여군에서는 대조군에 비하여 10배, pyrazine 투여군에서 7배 증가하였다. Pyrazine처치한 rat의 간 microsome 분획에서는 mEH 관련성 43 kDa 단백질이 동시 유도증가하는 것을 면역화학적 반응으로도 확인하였다. 이때 Pyrazine으로 유도된 rat의 간 microsome 분획 또는 정제분획에 존재하는 43 kDa 단백질과 mEH의 비율은 1 : 15로 나타났다. 정제된 mEH와 43 kDa 단백질의 N 말단 amino acid 서열을 분석하였을때 43 kDa 단백질의 N 말단이 mEH와 동일하게 나타나 관련 단백질임을 확인하였다. 이러한 mEN 유도현상에 종차가 있는지를 알아보기 위하여 thiazole과 pyrazine을 각각 rabbit에 투여하였을 때 rabbit에서 는 mEH의 유도증가가 일어나지 않았으며, pyrazine 투여군에서 43 kDa 단백질의 증가는 관찰 되었다. 본 연구는 thiazole 또는 pyrazine 투여후 mEH 발현이 유도증가되며, pyrazine 투여 후에는 mEH 및 이와 관련된 43 kDa 단백질이 동시유도되고, 이러한 mEH 유도발현에 rat와 rabbit간에는 종차가 있음을 보여준다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향 (Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum)

  • 이재성;김유경;조상수;최연성;강은주;이동수;정준기;이명철;김상은
    • 대한핵의학회지
    • /
    • 제39권6호
    • /
    • pp.413-420
    • /
    • 2005
  • 목적: 수용체 결합능 정량화를 위해서는 방사성추적자의 동태를 충분히 관찰하기 위해서 보통 뇌 PET 영상을 60-120분 정도 얻어야 한다. 이처럼 장기간 PET 영상을 얻게 되는 경우 보통 피험자의 수의적/불수의적 움직임을 피할 수 없고 이러한 피험자의 머리 움직임은 재구성된 PET 영상의 공간해상도를 저하시키고 측정된 방사능 농도의 정확성을 떨어뜨리는 요인이 된다. 이 연구에서는 동적 영상 정보만을 이용하여 피험자의 머리 움직임을 보정할 수 있는 방법을 개발하고 이를 피험자의 움직임이 불가항력적인 뇌활성화 도파민 D2 수용체 영상에 적용하여 움직임 보정이 리간드 결합능 및 외부 자극에 의한 도파민 유리(release) 정량화에 미치는 영향을 평가하였다. 대상 및 방법: 4명의 정상인 자원자에서 비디오 게임에 의한 도파민 유리를 평가하기 위한 실험으로 순간+연속 주입법을 이용하여 얻은 $[^{11}C]raclopride$ PET 영상을 이용하였으며 실제로 도파민 유리를 계산하기 위해서 필요한 프레임들만을 선별해서 영상 정합 기법을 적용하였다. 즉, $[^{11}C]raclopride$을 투여한 후 선조체에서의 리간드의 특이적 결합이 항정상태(steady state)에 최초로 도달하는 과제 수행 전 (30-50 분) 영역과, 비디오 게임 과제에 의해 도파민이 유리된 후 다시 항정상태에 도달하는 70-90분, 비디오 게임을 멈춘 후 다시 항정상태에 도달하는 110-120 분 데이터에만 움직임 보정 기법을 적용하는 방식이다. 각 항정상태 구간은 보통 2-4개의 프레임으로 구성되므로 먼저 이들 프레임들간의 영상정합을 수행(intra-condition registration)하여 평균 영상을 만들고 이들 평균 영상들을 정합하여 최종적으로 움직임 보정(inter-condition registration)을 하였다. 게임 수행 전후의 도파민유리를 평가하기 위하여 머리 움직임 보정 전후의 게임 과제 수행 전후의 결합능 백분율 변화를 구하였으며 각 조건에 대한 결합능 파라미터 영상을 구하고 움직임 보정 전후의 결합능 영상의 화소별 차이를 SPM2를 이용한 t-test(쌍체 검정)로 알아보았다. 결과: 움직임 보정 전후의 영상을 비교하였을 때, 움직임 보정 전 영상에서, 게임 수행시 영상이 게임을 위한 스크린 위치에 따른 시야 변동으로 게임 수행전 영상에 비하여 앞쪽 아래로 기울어져 있음을 알 수 있었으며 이러한 경향은 대상 피험자 모두에서 관찰되었다. 보정 전 영상으로부터 측정된 비디오 게임에 의한 도파민 유리는 putamen에서 29%, caudate head에서 57%, ventral striatum에서 17% 였으나, 보정 후 영상으로부터 구한 도파민 유리는 이들 영역에서 각각 3.9%, 14,1%, 0.6%로 움직임 보정을 하지 않은 경우 선조체 모든 구소물에서 결합능 감소, 즉 게임에 의한 도파민 유리가 과대평가됨을 알 수 있다. SPM 분석결과에서도 움직임을 보정하지 않은 영상을 이용한 경우, 선조체 구조물에서의 결합능 감소와 움직임에 의한 영상강도 저하가 복합적으로 영향을 주어 결합능 차이가 매우 유의하게 평가되었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다.