• Title/Summary/Keyword: 2-D Impeller

Search Result 74, Processing Time 0.021 seconds

Experimental Flow Visualisation of an Artificial Heart Pump

  • Tan, A.C.C.;Timms, D.L.;Pearcy, M.J.;McNeil, K.;Galbraith, A.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.210-216
    • /
    • 2004
  • Flow visualization techniques were employed to qualitatively visualize the flow patterns through a 400% scaled up centrifugal blood pump. The apparatus comprised of a scaled up centrifugal pump. high speed video camera. Argon Ion Laser Light Sheet and custom coded particle tracking software. Reynolds similarity laws are applied in order to reduce the rotational speed of the pump. The outlet (cutwater) region was identified as a site of high turbulence and thus a likely source of haemolysis. The region underneath the impeller was identified as a region of lower flow.

Study on the Radial Diffuser of Multistage High Pressure Pump (고압 다단 펌프의 레이디얼 디퓨저에 대한 연구)

  • Kim, Deok Su;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.727-736
    • /
    • 2016
  • In this study, a high-pressure multistage pump used in the combined cycle power plants is analyzed. The pump performance characteristics (differential head and efficiency) are numerically analyzed for different shapes of the radial diffuser. The design variables selected for the radial diffuser are, number of vanes, diameter ratio ($D_4/D_3$), return channel outlet angle(${\alpha}_6$), and pressure recovery factor ($C_p$). The numerical analysis results showed that the differential head and efficiency are the highest when the diameter ratio is the highest. Further, it was observed that the differential head was lower when the return channel outlet angle was $60^{\circ}$ than when it was $90^{\circ}$, because of pre-swirl at the diffuser outlet.

Prediction of Hemolysis in Intra-Cardiac Axial Flow Blood Pumps for Optimization of the Impellers (심장 내 이식형 축류 혈액펌프의 임펠러 최적화를 위한 용혈량 예측)

  • Kim, Dong-Uk;Mitamura, Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.431-437
    • /
    • 2002
  • Low hemolysis is one of the key factors in the production of successful rotary blood pumps. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer Fluid dynamics in five different axial flow pumps was analyzed 3-dimensionally using CFD software. The impeller was rotated at a speed which supplied a flow of 5L/min at a pressure difference of 100mmHg. Changes in the turbulent kinetic energy along streamlines through the pumps were computed. Reynolds' shear stress( (equation omitted) ) was calculated using the turbulent kinetic energy. Hemolysis was evaluated based on Reynolds'shear stress and its exposure time(t) : dHb/Hb=3.62$\times$10$^{-5}$ $t^{0.785}$$\tau$$^{2.416}$ . Hemolysis of the pumps was measured in vitro using fresh bovine blood to which citrate phosphate dextrose was added to prevent clotting. A pump flow of 5L/min was maintained at a pressure difference of 100mmHg for 3h. The normalized index of hemolysis(NIH) as measured. Reynolds' shear stress was high behind the impellers. The measured NIH and the calculated hemolysis(dHb/Hb) shoed a good correlation; NIH=0.0003(dHb/Hb) (r=0.90, n=6) in the range of NIH between 0.003 and 1.1. CFD analysis can predict the in vitro results of hemolysis as well as the areas where hemolysis occurs.ysis occurs.

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

Cavitation in Pump Inducer with Axi-asymmetrical Inlet Plate Observed by Multi-cameras

  • Kim, Jun-Ho;Atono, Takashi;Ishizaka, Koichi;Watanabe, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • The attachment of inducer in front of main impeller is a powerful method to improve cavitation performance; however, cavitation surge oscillation with low frequency occurs with blade cavity growing to each throat section of blade passage simultaneously. Then, one conceptual method of installing suction axi-asymmetrical plate has been proposed so as to keep every throat passage away from being unstable at once, and the effect on suppression of the oscillation were investigated. In the present study, cavitation behaviors in the inducer is observed with distributing multi-cameras circumferentially, recording simultaneously and reconstructing multi-photos on one plane field as moving a linear cascade. Observed results are utilized for discussion with other measuring results as casing wall pressure distribution. Then the suppression mechanism of oscillation by installing axi-asymmetrical inlet plate will be clarified in more details.

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

Development of a Low-noise Regenerative Blower for Fuel Cell Application (연료전지용 저소음 재생형 송풍기의 개발)

  • Kim, Jun Kon;Lee, Kwang Yeong;Lee, Chan;Kil, Hyun Gwon;Chung, Kyung Ho;Hwang, Sang Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • A low-noise regenerative blower is developed for fuel cell application by combining the FANDAS-Regen code and design optimization algorithm under several performance constraints for flow capacity, static pressure, efficiency and power consumption. The optimized blower design model is manufactured with some impeller modification based on low noise design concept and tested by using aerodynamic performance chamber facility and narrow-band noise measurement apparatus. The measured results of the optimized blower satisfy the performance requirements and are also compared favorably with the FANDAS-Regen prediction results within a few percent relative error. Furthermore, the present study shows the remarkable noise reduction by 26 dBA can be achieved through design optimization and low noise design concept.

The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner (초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과)

  • Lee, I.S.;Jung, J.W.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF

Numerical Study of Cavitating flow around Axysimmetric and 2D Body in Cryogenic Fluid (극저온 유체내에서 운행하는 물체 주위의 공동현상 해석에 관한 연구)

  • Lee, Se-Young;Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.309-312
    • /
    • 2007
  • The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.

  • PDF

Design and Performance Analysis of Ducted Propulsor for Underwater Robot (수중로봇용 덕트 추진기의 설계 및 성능해석)

  • Kim, Kyung-Jin;Lee, Doo-Hyoung;Park, Warn-Gyu;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • Underwater robots are generally used for the construction of seabed structures, deep-sea ecosystem research, ocean energy development, etc. A ducted marine propulsor is widely used for the thruster of an underwater robot because of its collision protection, efficiency increase, cavitation reduction, etc. However, the flow of a ducted propeller is very complex because it involves strong flow interactions between the blade impeller and duct. The present work aimed to design a ducted propeller using 2-D strip theory and CFD analysis. The hydrodynamic forces (i.e. and ) were computed to set the local angle of attack in a spanwise direction of the propeller blade. After the propeller design, performance coefficients such as the thrust, torque, and efficiency were computed to check whether the designed performance was achieved. To validate the present analysis, the thrust was compared with experimental data and good agreement was obtained.