• 제목/요약/키워드: 2-2 cement composite

검색결과 330건 처리시간 0.027초

그래핀-이산화티탄 복합 나노와이어를 혼입한 모르타르의 물성 평가 (Properties of Cement Mortar with Graphene-Titanium Dioxide Composite Nanowires)

  • 이준철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.118-119
    • /
    • 2021
  • The properties of cement mortar with graphene-titanium dioxide composite nanowires (TiO2(G)NW) were investigated in this study. The following tests were conducted with the cement mortar : (1) setting times (2) Flow test of fresh cement mortar, (3) compressive strength and (4) acetaldehyde removal efficiency under visible light. As the increase of TiO2(G) NW, the flow value of cement mortar was decreased and the setting times of cement mortar were faster. The compressive strength and the acetaldehyde removal efficiency were increased by the increase of TiO2(G) NW.

  • PDF

아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM)

  • 정혜전;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석 (FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL)

  • 이재영;오태석;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

글라스 아이오노머 시멘트의 표면처리방법에 따른 복합레진과의 전단결합강도에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN TO GLASS IONOMER CEMENT ACCORDING TO SURFACE TREATMENT METHODS OF GLASS IONOMER CEMENT)

  • 노봉환;황호길;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.362-371
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between composite resin and glass ionomer cement according to surface treatment methods of glass ionomer cement. Sixty round acrylic cylinders were fabricated. And then, a round undercut cavity(8 mm diameter, 2.5mm depth) was prepared in the center of the every acrylic cylinder. After all cavities were restored by using light-cured glass ionomer cement. A total of sixty acrylic cylinders restored with glass ionomer cement were divided into 4 groups according to surface treatment methods of glass ionomer cement. The surface treatment of each group were as follows : control group : no treatment Group 1 : acid etching Group 2 : sandblasting Group 3 : air-podwer abrasive polishing The composite resin was bonded to glass ionomer cement of each specimens. And the shear bond strength was tested with a universal testing machine at a cross-head speed of 1mm/min and 500kg in full scale. The results were as follows : 1. The sandblasting group(group 2) had the highest shear bond strength with $272.50{\pm}24.96\;kg/cm_2$ and the acid etching group(group 1) had the lowest shear bond strength with $192.89{\pm}29.32kg/cm_2$. 2. The no treated group(control group) had higher shear bond strength than acid etching group(group 1) (p<0.05). 3. The sandblasting group(group 2), air-powder abrasive polishing group(group 3) and no treated group(control group) had higher shear bond strength than the acid etching group(group 1) (p<0.05). 4. The sandblasting group(group 2) and air-powder abrasive polishing group(group 3) had higher shear bond strength than the no treatment group(control group), but there was not significant(p>0.05).

  • PDF

Glass ionomer cement를 이장한 Composite resin의 변연 적합성에 관한 연구 (MARGINAL ADAPTATION OF COMPOSITE RESIN USING GLASS IONOMER CEMENT BASES)

  • 한승원
    • Restorative Dentistry and Endodontics
    • /
    • 제14권2호
    • /
    • pp.5-19
    • /
    • 1989
  • The purpose of this study was to observe the microleakage of composite resin filling using several glass ionomer cements. The Class V cavities of eighty noncarious human molars were prepared at the cementoenamel juction on the facial and lingual surfaces of each tooth with a No.330 carbide bur in a high speed handpiece. The cavity dimensions were $3.0{\pm}0.5mm$ wide, $2.0{\pm}0.5mm$ high, and $1.5{\pm}0.5mm$ deep and all enamel cavosurface margins were beveled with a No.558 carbide bur in low speed handpiece. The bevel was approximately $45^{\circ}$ and 0.5-1.0mm in width. A total of the 160 cavities was divided into four groups, and then 144 cavities among them were three experimental groups and remaining sixteen cavities were control group. All of the prepared cavities were restored as follows: group 1 : Preparations were restored with there three glass ionomer cements. group 2 : Preparations were restored with a composite resin with three glass ionomer cement bases placed $0.2{\pm}0.1mm$ short of the cavosurface margin. group 3 : Preparations were restored with a composite resin with three glass ionomer cement bases extened to the cavosurface margin. group 4 : As control group, preparations were restored with a composite resin, PALFIQUE. The specimens were then thermocycled in a range of $6^{\circ}C-60^{\circ}C$ and immersed in a bath of 2.0% aqueous basic fuchsin solution for 24 hours. Dye penetration was read on a scale of 0 to 4 by Tani and Buonocore's method. The following conclusions were derived from the results obtained; 1. All groups showed significantly more leakage at the gingival margins than at the occlusal margins(p<0.0005). 2. At the gingival margins, group 1 showed less leakage than group 3(p<0.01) and group 4(p<0.0005), while group 3 exhibited less leakage than group 2(p<0.01) and group 4(p<0.0005). 3. At the occlusal margins, group 4 showed less leakage than group 3(p<0.1) and group 1(p<0.005), while group 3 exhibited less leakage than group 2(p>0.1) and group 1(p<0.025).

  • PDF

Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향 (The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

V급와동에 충전한 심미성 수복재의 치질과의 접합도에 관한 주사전자현미경적 연구 (A SEM STUDY ON THE ADAPTATION OF ESTHETIC RESTORATIVE MATERIALS TO TOOTH STRUCTURE IN CLASS V CAVITIES)

  • 조영곤;고창현
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.413-422
    • /
    • 1993
  • The purpose of this study was to evaluate the adaptation of light cured glass ionomer cement and composite resin using all- etch technique to tooth structure. In this study, class V cavities were prepared on the buccal surfaces of 10 extracted human premolar teeth with cementum margin and teeth were randomly assigned 2 groups of 5 teeth each. The cavities of glass ionomer cement group were filled with the light cured glass ionomer cement(Fuji II LC) and the cavities of composite resin group were filled with the light cured composite resion(P - 50) using all- etch technique with All- Bond 2. The restored teeth were stored in 100 % relative humidity at $37^{\circ}C$ for 48 hours. And then, the roots of the teeth were removed with the tapered fissure bur and the remaining crowns were sectioned occlusogingivally through the center of restorations. Adaptation at tooth - restoration interface were assessed occlusally, gingivally, and axially by scanning electron microscope. The results were as follows : 1. The adaptation to enamel walls of composite resin restorations using All - Bond 2 showed better than glass ionomer restorations. 2. The adaptation to gingival and axial walls of glass ionomer restorations showed better than composite resin restorations using All - Bond 2. 3. In both groups, occlusal margins of restorations showed better adaptation than gingival margins of restorations.

  • PDF

복합레진 적용에 따른 광중합형 글라스아이오노머 시멘트의 변연 적합도의 변화 (CHANGES OF MARGINAL ADAPTATION TO THE CAVITY FLOOR OF LIGHT-CURED GLASS IONOMER CEMENT BASE AFTER APPLICATION OF A COMPOSITE RESTORATION)

  • 이계영;이광원;박수정
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.136-146
    • /
    • 1999
  • The purpose of this study was to estimate the changes of marginal adaptation to the cavity floor of light-cured glass ionomer cement base after application of a composite restoration. Eighty non-carious extracted human molars were used in the present study. Circular cavities were prepared on the center of the exposed dentin surface to 0.5mm, 1.0mm, 1.5mm, 2.0mm in depth and the prepared cavities were pretreated with Dentin conditioner and filled with Fuji II LC(GC Int. Co., Japan). They randomly assigned into 3 groups according to the difference in application of a composite restoration; Group 1(control group): only glass ionomer base, Group 2: The application of a composite restoration surrounded by dentin with class I cavity over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base, Group 3: The application of composite restoration not-surrounded by dentin over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base. To examine the interface between cavity floor and light-cured glass ionomer cement base, each groups were sectioned vertically through the center of restorations with diamond saw and the gap size(${\mu}m$) of interface measured by SEM. The results were analyzed by using One Way ANOVA. The results were as follows: 1. Good adaptation between glass ionomer cement base and cavity floor was showed in specimens with 0.5mm, 1.0mm depth base of control group. But in specimens with 1.5mm, 2.0mm depth base of control group, the gap was measured about $15{\mu}m$, $40{\mu}m$ respectively. 2. Gap size in group 2 was significantly higher than that in control group(P<0.05). 3. Gap size in group 3 was significantly higher than that in control group and group 2(P<0.05). 4. It was possible to observe the good adaptation between glass ionomer cement base and dentin which was intermediated with 4-10${\mu}m$ hybrid layer in specimens with 0.5mm, 1.0mm depth base of control group. Cohesive fracture within cement base was observed in all specimens which had the gap between glass ionomer cement base & dentin. 5. It was possible to observe the gap formation between cement base and bonding agent and between composite resin and dentin in all specimens of group 2.

  • PDF

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

합착방법(合着方法)에 따른 복합(複合)레진 인레이의 변연폐쇄효과(邊緣閉鎖效果) (THE MARGINAL SEALING EFFECT OF COMPOSITE RESIN INLAYS ACCORDING TO THE LUTING TECHNIQUES)

  • 문영덕;조규징
    • Restorative Dentistry and Endodontics
    • /
    • 제16권1호
    • /
    • pp.121-132
    • /
    • 1991
  • The purpose of the study was to evaluate the marginal sealing effect of composite resin inlays according to the luting techniques and compare them to the conventional direct resin filling technique. 90 cavities of class V were prepared on the buccal surface of 90 extracted molar teeth, which were divided into four groups. Cavities of control group were directly filled with Scotchbond 2 and P - 50, and those of composite resin inlay groups were luted with one of the followings: Adhesive bond followed by Adhesive cement, All bond followed by Adhesive cement, Fuji - ionomer type L All the specimens were immersed in India ink dye solution for 7 days at $37^{\circ}C$ incubator after thermocycling between $5^{\circ}C$ and $60^{\circ}C$ and longitudinally sectioned with diamond disk inot two parts All the specimens were observed at the occlusal and gingival margins and statistical analysis was performed. The results were as follows: 1. Groups filled with composite resin inlay showed less marginal leakage than the group directly filled(p<0.01). 2. There was no significant difference in marginal leakage between composite resin inlay groups luted with Adhesive bond followed by Adhesive cement and the group luted with All bond followed by Adhesive cement(p>0.05). 3. At occlusal margins, Composite resin inlay group luted with Adhesive bond followed by Adhesive cement showed less marginal leakage than the group luted with Fuii ionomer type I(p<0.01). At gingival margins, composite resin inlay group luted with All bond followed by Adhesive cement showed less marignal leakage than the group luted with Fuji ionomer type I(P<0.01).

  • PDF