• Title/Summary/Keyword: 2-차원 얼굴인식

Search Result 85, Processing Time 0.025 seconds

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels. We propose that usability with visual distinguishing factor that using feature vector because as a result of recognition experiment for recognition parameter with the 10 korean vowels, obtaining high recognition rate.

  • PDF

Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model (얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법)

  • Seo, Seong-gwan;Son, Baehoon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1081-1090
    • /
    • 2022
  • The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

On the Implementation of a Facial Animation Using the Emotional Expression Techniques (FAES : 감성 표현 기법을 이용한 얼굴 애니메이션 구현)

  • Kim Sang-Kil;Min Yong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, we present a FAES(a Facial Animation with Emotion and Speech) system for speech-driven face animation with emotions. We animate face cartoons not only from input speech, but also based on emotions derived from speech signal. And also our system can ensure smooth transitions and exact representation in animation. To do this, after collecting the training data, we have made the database using SVM(Support Vector Machine) to recognize four different categories of emotions: neutral, dislike, fear and surprise. So that, we can make the system for speech-driven animation with emotions. Also, we trained on Korean young person and focused on only Korean emotional face expressions. Experimental results of our system demonstrate that more emotional areas expanded and the accuracies of the emotional recognition and the continuous speech recognition are respectively increased 7% and 5% more compared with the previous method.

  • PDF

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Human Legs Stride Recognition and Tracking based on the Laser Scanner Sensor Data (레이저센서 데이터융합기반의 복수 휴먼보폭 인식과 추적)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-253
    • /
    • 2019
  • In this paper, we present a new method for real-time tracking of human walking around a laser sensor system. The method converts range data with $r-{\theta}$ coordinates to a 2D image with x-y coordinates. Then human tracking is performed using human's features, i.e. appearances of human walking pattern, and the input range data. The laser sensor based human tracking method has the advantage of simplicity over conventional methods which extract human face in the vision data. In our method, the problem of estimating 2D positions and orientations of two walking human's ankle level is formulated based on a moving trajectory algorithm. In addition, the proposed tracking system employs a HMM to robustly track human in case of occlusions. Experimental results using a real system demonstrate usefulness of the proposed method.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

A Study On Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architectures (3차원 얼굴인식 모델에 관한 연구: 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.900-911
    • /
    • 2015
  • In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition (3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계)

  • Oh, Sung-Kwun;Oh, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

Digital Holographic Security Identification System (디지털 홀로그래픽 보안 인증 시스템)

  • Kim, Jung-Hoi;Kim, Nam;Jeon, Seok-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we implement a digital holographic security card system that combines digital holographic memory using random phase encoded reference beams with electrical biometrics. Digitally encoded data including a document, a picture of face, and a fingerprint are recorded by multiplexing of holographic memory. A random phase mask encoding reference beams are used as a decoded key to protect illegal counterfeit. As a result, we can achieve a raw BER of 3.6${\times}$10-4 and shift selectivity of 4${\mu}{\textrm}{m}$ using the 2D random phase mask. Also, we develop a recording pattern and image processing which are suitable for a low cost reader without a position sensing photo-detector for real time data extraction and remove danger of fraud from unauthorized person by comparing the reconstructed holographic data with the live fingerprint data.