• Title/Summary/Keyword: 2 Dimensional

Search Result 15,139, Processing Time 0.062 seconds

Tissue Engineered Cartilage Formation on Various PLGA Scaffolds (PLGA 종류와 담체의 형성 방법에 따른 인간의 조직공학적 연골형성)

  • 김유미;임종옥;정호윤;박태인;백운이
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2002
  • The purpose of this study was to evacuate the effect of different types of Poly(lactic-co-glycolic acid) (PLGA) scaffolds on the formation of human auricular and septal cartilages. All of the scaffolds were formed in a tubular shape for potential application for artificial trachea or esophagus with either 110,000 g/mol PLGA. 220,000 g/mol PLGA. or a combination of both. In order to maintain the tubular shape in vivo, two methods were used. One method was inserting polyethylene tube at the center of scaffolds made of 110,000 g/mol PLGA. The other method involved combination of the two different molecular weight PLGA's. The inner surface of tubular shaped scaffold made with 110,000 g/mol PLGA was coated with 220,000 9/mol PLGA to give more mechanical rigidity. Elastic cartilage was taken from the ear of a patient aged under 20 nears old and hyaline cartilage was taken from the nasal septum. The chondrocytes were then isolated. After second passage, the chondrocytes were seeded on the PLGA scaffolds followed by in vitro culture for one week. The cells-PLGA scaffold complex were implanted subcutaneously on the back of nude mice for 8 weeks. The tissue engineered cartilages were separated from nude mice and examined histologically after staining with the Hematoxylin Eosin. The morphology of the scaffolds were examined by scanning electron microscopy. The pores were well formed and uniformly distributed in the various PLGA scaffolds. After 8 weeks in vivo culture, cartilage was well formed with 110,000 g/mol PLGA. however lumen had collapsed. In contrast. a minimal amount of neocartilage was formed with 220,000 g/mol PLGA, while the architecture of scaffold and lumen were well preserved. Elastic cartilage formed more neocartilage than hyaline. Hyaline and elastic neocartilage were well formed on 110,000 g/mol PLGA with the polyethylene tube, exhibiting mature chondrocytes and preservation of the tubular shape. It was found that 110,000 g/mol PLGA was more appropriate for cartilage formation but higher molecular weight polymer was necessary to maintain the three dimensional shape of the scaffold.

Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula (지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구)

  • Kim So-Gu;Bae Hyung-Sub
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.111-128
    • /
    • 2006
  • Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.

Measurements of Setup Error and Physiological Movement of Liver by Using Electronic Portal Imaging Device in Patients with Hepatocellular Carcinoma (간암환자에서 Electronic Portal Imaging Device(EPID)를 이용한 자세 오차 및 종양 이동 거리의 객관적 측정)

  • Keum Ki Chang;Lee Sang-wook;Shin Hyun Soo;Kim Gwi Eon;Sung Jinsil Seong;Lee Chang Geol;Chu Sung Sil;Chang Sei-Kyung;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2000
  • Purpose : The goal of this study 닌as to improve the accuracy of three-dimensional conformal radiotherapy (3-D CRT) by measuring the treatment setup error and physiological movement of liver based on the analysis of images which were obtained by electronic portal imaging device (EPID). Materials and Methods : For 10 patients with hepatocellular carcinoma, 4-7 portal images were obtained by using EPID during the radiotherapy from each patient daiiy. We analyzed the setup error and physiological movement of liver based on the verification data. We also determined the safety margin of the tumor in 3-D CRT through the analysis of physiological movement. Results : The setup errors were measured as 3mm with standard deviation 1.70 mm in x direction and 3.7 mm with standard deviation 1.88 mm in y direction respectively. Hence, deviation were smaller than 5mm from the center of each axis. The measured range of liver movement due to the physiological motion was 8.63 mm on the average. Considering the motion of liver and setup error, the safety margin of tumor was at least 15 mm. Conclusion : EPID is a very useful device for the determination of the optimal margin of the tumor, and thus enhance the accuracy and stability of the 3-D CRT in patients with hepatocellular carcinoma.

  • PDF

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

Experimental Study on Effectiveness of Wave Reduction and Prevention Erosion of Nourishment Sand Using the Cell Group (Cell Group을 이용한 파랑저감 및 양빈사 유실방지에 관한 실험적 연구)

  • Park, Sang Kil;Park, Hong Bum;Kim, Young Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, a submerged breakwater has been installing to prevent the erosion of shoreline everywhere. Artificially submerged breakwater is made to minimize the loss of nourishment sand beach erosion. For this reason, it has been indiscriminately constructed submerged breakwater that is planned in the country throughout. However, maintenance purposes to keep the shoreline of the beach is a method that is quite a few problems. There are also disadvantages such as expensive construction costs, ocean space utilization, water pollution and shoreline modification. In addition, person of utilizing the space of the ocean leisure does not like that because of the disconnection of ocean space. The beaches such as Gwanganri are artificially supplying nourishment sand to maintain the beach. The flexible construction method refers to a structure that is installed as a flexible material instead of submerged breakwater to prevent the loss of nourishment sand. In order to develop a new method to mitigate shoreline erosion, this study was carried out a hydraulic model experiment by installing a cell group as an example of the flexible method. Namely, in order to prevent the loss of nourishment sand, we decided to develop a new method that can mitigate the degree of beaches erosion by using cell group instead of submerged breakwater. In the two dimensional fixed hydraulic experiment, was carried out the effect reducing of wave height and the rate of low reflection due to the installation of the cell group. In movable bed experiment, the capture rate of the nourishment sand and the erosion prevention rate of the nourishment sand was performed for stability of shoreline. Therefore, according to the results of the hydraulic tests, it was possible to maintain the stable beaches due to installing the cell group on the erosion beaches, due to the effect of reducing wave height, the low reflection, the erosion prevention rate of nourishment sand, the high capture rate of nourishment sand.

Earth Pressure on the Braced Wall in the Composite Ground Depending on the Depth and the Joint Dips of the Base Rocks under the Soil Strata (복합지반 굴착 시 기반암의 깊이와 절리경사에 따라 흙막이벽체에 작용하는 토압)

  • Bae, Sang Su;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.41-53
    • /
    • 2016
  • Stability of the braced earth wall in the composite ground, which is composed of the jointed base rocks and the soil strata depends on the earth pressure acting on it. In most cases, the earth pressure is calculated by the empirical method, in which base rocks are considered as a soil strata with the shear strength parameters of base rocks. In this case the effect of the joint dips of the jointed base rocks is ignored. Therefore, the calculated earth pressure is smaller than the actual earth pressure. In this study, the magnitude and the distribution of the earth pressure acting on the braced wall in the composite ground depending on the joint dips of the base rocks and the ratio of soil strata and base rocks were experimentally studied. Two dimensional large-scale model tests were conducted in a large scale test facility (height 3.0 m, length 3.0 m and width 0.5 m) by installing 10 supports in a scale of 1/14.5. The test ground was presumed with the base rock ratio of the composite ground of 65%:35% and 50%:50% and with the joint dips for each base rock layer, $0^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, respectively. And then finite element analyses were performed in the same condition. As results, the earth pressure on the braced wall increased as the base rock layer's joint dips became larger. And earth pressure at the rock layer increased as the rock rate became larger. The largest earth pressure was measured when the base rock rate was 50% (R50) and the rock layer's joint dips was $60^{\circ}$. Based on these results, a formular for the calculation of the earth pressure in the composite ground could be suggested. Distribution of earth pressure was idealized in a quadrangular form, in which the magnitude and the position of peak earth pressure depended on the rock ratio and the joint dips.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Small Bowel Sparing Effect of Small Bowel Displacement System in 3D-CRT and IMRT for Cervix Cancer (자궁경부암의 3D-CRT와 IMRT시 소장전위장치의 소장 선량에 대한 영향)

  • Kang, Min-Kyu;Huh, Seung-Jae;Han, Young-Yih;Park, Won;Ju, Sang-Gyu;Kim, Kyoung-Ju;Lee, Jeung-Eun;Park, Young-Je;Nam, Hee-Rim;Lim, Do-Hoon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • Purpose : In radiotherapy for cervix cancer, both 3-dimensioal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) could reduce the dose to the small bowel (SB), while the small bowel displacement system (SBDS) could reduce the SB volume in the pelvic cavity. To evaluate the effect of the SBDS on the dose to the SB in 3D-CRT and IMRT plans, 3D-CRT and IMRT plans, with or without SBDS, were compared. Materials and Methods : Ten consecutive uterine cervix cancer patients, receiving curative radiotherapy, were accrued. Ten pairs of computerized tomography (CT) scans were obtained in the prone position, with or without SBDS, which consisted of a Styrofoam compression device and an individualized custom-made abdominal immobilization device. Both 3D-CRT, using the 4-field box technique, and IMRT plans, with 7 portals of 15 MV X-ray, were generated for each CT image, and proscribed 50 Gy (25 fractions) to the isocenter. For the SB, the volume change due to the SBDS and the DVHs of the four different plans were analyzed using palled t-tests. Results : The SBDS significantly reduced the mean SB volume from 522 to 262 cm$^{3}$ (49.8$\%$ reduction). The SB volumes that received a dose of 10$\~$50 Gy were significantly reduced in 3D-CRT (65$\~$80$\%$ reduction) and IMRT plans (54$\~$67$\%$ reduction) using the SBDS. When the SB volumes that received 20$\~$50 Gy were compared between the 3D-CRT and IMRT plans, those of the IMRT without the SBDS were significantly less, by 6$\~$7$\%$, than those for the 3D-CRT without the SBDS, but the volume difference was less than 1$\%$ when using the SBDS. Conclusion : The SBDS reduced the radiation dose to the SB in both the 3D-CRT and IMRT plans, so could reduce the radiation injury of the SB.

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.

Application of Borehole Radar to Tunnel Detection (시추공 레이다 탐사에 의한 지하 터널 탐지 적용성 연구)

  • Cho, Seong-Jun;Kim, Jung-Ho;Kim, Chang-Ryol;Son, Jeong-Sul;Sung, Nak-Hun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.279-290
    • /
    • 2006
  • The borehole radar methods used to tunnel detection are mainly classified into borehole radar reflection, directional antenna, crosshole scanning, and radar tomography methods. In this study, we have investigated the feasibility and limitation of each method to tunnel detection through case studies. In the borehole radar reflection data, there were much more clear diffraction signals of the upper wings than lower wings of the hyperbolas reflected from the tunnel, and their upper and lower wings were spreaded out to more than 10m higher and lower traces from the peaks of the hyperbolas. As the ratio of borehole diameter to antenna length increases, the ringing gets stronger on the data due to the increase in the impedance mismatching between antennas and water in the boreholes. It is also found that the reflection signals from the tunnel could be enhanced using the optimal offset distance between transmitter and receiver antennas. Nevertheless, the borehole radar reflection data could not provide directional information of the reflectors in the subsurface. Direction finding antenna system had a advantage to take a three dimensional location of a tunnel with only one borehole survey even though the cost is still very high and it required very high expertise. The data from crosshole scanning could be a good indicator for tunnel detection and it could give more reliable result when the borehole radar reflection survey is carried out together. The images of the subsurface also can be reconstructed using travel time tomography which could provide the physical property of the medium and would be effective for imaging the underground structure such as tunnels. Based on the results described above, we suggest a cost-effective field procedure for detection of a tunnel using borehole radar techniques; borehole radar reflection survey using dipole antenna can firstly be applied to pick up anomalous regions within the borehole, and crosshole scanning or reflection survey using directional antenna can then be applied only to the anomalous regions to detect the tunnel.