• 제목/요약/키워드: 2차 이산 코사인 변환

검색결과 5건 처리시간 0.024초

디지털 VCR의 영상압축 기술 및 그의 화질 개선에 관한 연구 (Study on the Digital VCR System and Its Image Enhancement Techniques)

  • 이형호;백준기
    • 방송공학회논문지
    • /
    • 제1권2호
    • /
    • pp.142-151
    • /
    • 1996
  • 디지털 비디오 카세트 레코더(DVCR)는 디지털 기록과 다양한 디지털 영상처리 기술과 같은 여러가지 측면에서 놀랄만한 성능에 힘입어 차세대 VCR로 대두되고 있다. 본 논문에서는 DVCR 시스템의 표준규격을 이해하고, 성능을 평가하고, 재생된 DVCR의 영상을 개선시키는 알고리듬을 제안하고자 한다. 보다 자세히 설명하자면, DVCR 영상을 개선하기 위하여 이산 코사인 변환, 양자화, 역 이산코사인 변환과 역양자화를 영상 시스템의 열화요인으로 모델링하고, 이러한 열화모델 때문에 발생하는 블럭 현상을 적응적으로 복원하는 고속 알고리듬을 제안한다.

  • PDF

한국어 고립단어인식을 위한 고속 알고리즘 (Fast Algorithm for Recognition of Korean Isolated Words)

  • 남명우;박규홍;정상국;노승용
    • 한국음향학회지
    • /
    • 제20권1호
    • /
    • pp.50-55
    • /
    • 2001
  • 본 논문에서는 청각모델을 이용하여 음성신호로부터 추출한 특징벡터를 2차원 DCT (discrete cosine transform)방법을 사용하여 가공한 후, 새로운 거리측정 방법에 적용하여 한국어 고립단어 인식 실험을 행하였다. 고립단어 인식은 기존에 많은 방법들이 제안되어졌으나, 본 논문에서 제안한 방법은 고립단어 인식을 위한 특징 파라미터로 2차원 DCT 계수를 사용한 것으로 구현이 간단하며, 간단한 계산식으로 인하여 빠른 인식 시간을 가지는 장점이 있다. 제안한 방식의 타당성 검토를 위하여, 고립단어 인식에서 좋은 인식결과를 나타내는 DTW (Dynamic Time Warping)방법을 사용하여 인식률을 비교하였다[5][6]. 실험결과 제안한 방식은 DTW를 사용한 인식방법에 비하여 화자종속 고립단어 인식에서는 거의 유사한 인식결과를, 화자독립 고립단어 인식에서는 더 높은 인식결과를 얻을 수 있었다. 또한, DTW에 비해 패턴비교를 위한 계산시간에 있어서는 200배 이상의 감소효과를 볼 수 있었다. 제안된 방법은 비교 방법에 비하여 잡음환경에서도 강한 특성을 보였다.

  • PDF

뉴로모픽 구조 기반 FPGA 임베디드 보드에서 이미지 분류 성능 향상을 위한 특징 표현 방법 연구 (Feature Representation Method to Improve Image Classification Performance in FPGA Embedded Boards Based on Neuromorphic Architecture)

  • 정재혁;정진만;윤영선
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.161-172
    • /
    • 2021
  • 뉴로모픽 아키텍처는 저에너지로 인공지능 기술을 지원하는 차세대 컴퓨팅으로 주목받고 있다. 그러나 뉴로모픽 아키텍처 기반의 FPGA 임베디드 보드는 크기나 전력 등으로 인하여 가용 자원이 제한된다. 본 논문에서는 제한된 자원을 효율적으로 사용하기 위해 특징점의 고려 없이 크기를 재조정하는 보간법과 에너지 기반으로 특징점을 최대한 보존하는 DCT(Discrete Cosine Transform) 기법을 통한 특징 표현 방법을 비교 및 평가한다. 크기가 조정된 이미지는 일반적인 PC 환경에서와 FPGA 임베디드 보드의 Nengo 프레임워크에서 컨벌루션 신경망을 통해 정확도를 비교 분석했다. 실험 결과 PC의 컨벌루션 신경망과 FPGA Nengo 환경 모두에서 DCT 기반 분류 성능이 일반 보간법보다 약 1.9% 높은 성능을 보였다. 실험 결과를 바탕으로 뉴로모픽 구조 기반 FPGA 보드의 제한된 자원 환경에서 기존에 사용되던 보간법 대신 DCT 방식을 이용한다면 분류에 사용되는 뉴런의 표현에 많은 자원을 할당하여 인식률을 높일 수 있을 것으로 기대한다.

k-clustering 부공간 기법과 판별 공통벡터를 이용한 고립단어 인식 (Isolated Word Recognition Using k-clustering Subspace Method and Discriminant Common Vector)

  • 남명우
    • 대한전자공학회논문지TE
    • /
    • 제42권1호
    • /
    • pp.13-20
    • /
    • 2005
  • 본 논문에서는 M. Bilginer 등이 제안한 CVEM(common vector extraction method)을 이용하여 한국어 화자독립 고립단어 인식실험을 수행하였다. CVEM은 학습용 음성신호들로부터 공통된 특징의 추출이 비교적 간단하고, 많은 계산 량을 필요로 하지 않을 뿐만 아니라 높은 인식 결과를 보여주는 알고리즘이다. 그러나 학습 음성의 개수를 일정 한도 이상으로 늘릴 수 없고, 추출된 공통벡터들 간의 구별정보(discriminant information)를 가지고 있지 않다는 문제점을 가지고 있다. 임의의 음성군으로부터 최적의 공통벡터를 추출하기 위해서는 다양한 음성들을 학습에 사용해야만 하는데 CVEM은 학습용 음성 개수에 제한이 있으므로 지속적인 인식률 향상을 기대하기 어렵다. 또한 공통벡터들 간의 구별정보 부재는 단어 결정에 있어서 치명적인 오류의 원인이 될 수 있다. 본 논문에서는 CVEM이 가지고 있는 이러한 문제점들을 보완하면서 인식률을 향상시킬 수 있는 새로운 방법인 KSCM(k-clustering subspace method)과 DCVEM(discriminant common vector extraction method)을 제안하였고 이 방법을 사용하여 고립단어를 인식하였다. 그리고 제안한 방법들의 우수성을 입증하기 위해 ETRI에서 제작한 음성 데이터베이스를 사용, 다양한 방법으로 실험을 수행하였다. 실험 결과 기존 방법의 문제점들을 모두 극복할 수 있었을 뿐 아니라 기존에 비해 계산량의 큰 증가 없이 향상된 결과를 얻을 수 있었다.

선형 판별분석과 공통벡터 추출방법을 이용한 음성인식 (Speech Recognition Using Linear Discriminant Analysis and Common Vector Extraction)

  • 남명우;노승용
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.35-41
    • /
    • 2001
  • 본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was

  • PDF