• 제목/요약/키워드: 2차 설계

검색결과 2,793건 처리시간 0.031초

시뮬레이션 모형에 의한 온실의 열환경 분석 (Analysis of Greenhouse Thermal Environment by Model Simulation)

  • 서원명;윤용철
    • 생물환경조절학회지
    • /
    • 제5권2호
    • /
    • pp.215-235
    • /
    • 1996
  • 본 연구에서 수행한 Model 시뮬레이션에 의한 열환경 분석 기법은 지역별로 다양한 기상여건 하에서 대상온실의 난방 및 냉방부하를 보다 합리적으로 예측할 수 있을 뿐만 아니라 냉방이나 난방용 시스템의 결정을 비롯한 난방대책을 수립하고, 에너지 이용 전략의 수립이나 계절적인 작부계획 수립, 온실산업용 적지선정 등에 유익하게 활용될 수 있을 것이라 판단된다. 본 연구에서는 온실의 적극적인 환경조절 유형을 난방과 냉방의 두 가지로 대별하고, 난방 소요열량 산정을 비롯하여 야간의 보온 커튼효과, Heating Degree-Hour 산정 등 난방과 관련된 시뮬레이션은 동적 모형을 이용하여 시간별, 일별 및 월별로 검토하였으며, 환기를 비롯한 차광, 증발냉각시스템의 효과 분석은 정적모형을 이용하여 검토하였다. 특히 하절기 지하수와 같은 저온수를 직접 이용하거나 Heat Pump를 통하여 확보될 수 있는 저온수를 이용하여 온실의 피복면에 살수함으로서 확보할 수 있는 온실냉방효과를 검토하는 데는 1.2m$\times$2.4m 크기의 모형온실을 제작하여 기초실험을 수행함으로서 동절기의 수막시스템의 보온효과와 마찬가지로 하절기 냉방 효과를 거둘 수 있다는 가능성을 확인하였다. 본 연구에 활용된 온실의 수치 환경모형 중 난방관련 시뮬레이션용 동적 수치모형은 소기의 목적을 달성하는데 충분히 응용될 수 있는 이론모형이다. 이 이론모형이 범용성이 높은 것은 온실 내ㆍ외의 미기상 변화, 특히 난방이나 냉방이 본격적으로 요구되는 기간동안에 온도, 습도, 일사, 풍속 등의 미기상 인자들을 면밀하게 관찰하여 실측된 자료를 바탕으로 개발되었고, 다양한 자료에 의해 충분히 검정되었기 때문이다. 본 연구에서는 경남 진주지역의 어느 특정 기간(1987년)의 시간별 기상자료를 중심으로 온실의 열적 환경변화에 대한 수치모형 시뮬레이션을 실시하였으며, 아직 수치모형에 의한 시뮬레이션이 불가능한 일부 냉방효과를 검토하는 데는 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 주간과 야간의 설정온도를 달리하고 다단계 변온조절방식으로 시뮬레이션을 행한 결과 난방 소요열량은 난방 설정온도에 따라 현저한 차이를 보였다. 특히 주간 설정온도에 비하여 야간 설정온도가 난방 소요열량에 예민하게 영향을 미치므로 야간의 설정온도 결정에 신중을 기해야 할 것으로 판단된다. 2. 기존의 Heating Degree-Hour 자료는 평균 외기온을 중심으로 임의의 설정온도에 대하여 산정된 값이므로 난방 소요열량에 대한 상대적인 비교수단은 되나 고려되는 기상인자의 제한과 설정온도의 임의성 때문에 실용성이 부족하다. 따라서 본 연구에서 제시된 것처럼 온실 주변의 제반 미기상 인자나 경계조건이 반영됨은 물론 작물의 생육상태 및 구체적인 설정온도까지도 고려하는 동적 수치모형으로 시시각각으로 예측된 실내기온을 중심으로 재배기간 동안의 난방열량을 적산함이 합리적이라 판단된다. 기존의 MDH 자료로 난방 설계를 할 경우에는 지나치게 과잉설계 될 가능성이 있다. 3. 산정된 난방 소요열량은 물론 커튼의 보온성능도 월별 기상여건에 따라 현저한 차이를 보이며, 시뮬레이션에 이용된 커튼의 경우 높은 보온효과를 보임으로서 년 평균 50% 이상의 난방 에너지를 절감할 수 있으며, 동절기 3-4개월의 집중 난방기에 에너지가 크게 절감됨을 발견할 수 있다. 4. 고온기 환기성능은 온실의 구조, 기상조건, 작물의 생육상태 등에 따라 다소의 차이가 있으나 환기율에 의해 크게 좌우되며, 시뮬레이션에 이용된 두 가지 농가보급형 온실 모두 환기율의 증가에 따른 실내기온의 강하 효과가 환기율이 1회/min 정도를 넘어서면서 급격히 둔화되는 현상을 보인다. 이는 기존에 권장되고 있는 적정 환기율인 1회/min 전후의 환기 시스템을 갖추는 것이 합리적임을 확인해 준다. 5. 작물이 성숙된 유리온실에서 외기의 상대습도가 50%인 쾌청한 주간동안 연속적으로 1회/min로 환기를 시킬 경우 실내기온 36.5$^{\circ}C$의 대조구에 비한 온도강하는 50% 차광만 했을 시 2.6$^{\circ}C$이고 효율 80%의 Pad & Fan 시스템만 작동시 6.1$^{\circ}C$ 정도이며, 차광과 냉각시스템을 동시에 작동시는 약 8.6$^{\circ}C$로서 외기온보다 3.3$^{\circ}C$가 낮은 28$^{\circ}C$까지 실내온도를 낮출 수 있으나, 동일 조건하에서 외기의 상대습도가 80%로 높은 경우에는 Pad & Fan시스템에 의한 온도강하가 2.4$^{\circ}C$에 불과하여 50% 차광하에서도 외기온 이하로 실내온도를 낮출 수 없음을 알 수 있다. 6. 하절기 3개월(6/1-8/31)동안 Pad & Fan 시스템의 냉방효과($\Delta$T)는 설정된 작동 온도에 따라 다소 차이를 보일 것으로 예상되나 본 시뮬레이션에서 설정한 시스템의 작동 온도 27$^{\circ}C$에서 상대습도와의 상관관계는 대략 다음과 같았다: $\Delta$T= -0.077RH+7.7 7. 전형적인 하절기 주간기상 하에서 경시적 냉방효과를 분석한 결과 환기만으로는 실내기온을 외기온 보다 5$^{\circ}C$ 높게 유지하는 정도가 고작이고, 차광이나 증발식 냉방시스템 만으로는 작물이 성숙한 단계에서조차도 외기온 이하로 떨어뜨리기가 어려우나 차광과 아울러 증발식 냉방을 병행할 경우에는 작물상태에 따라 다소 차이는 있지만 실내기온을 외기온보다 2.0-2.3$^{\circ}C$ 낮게 유지할 수 있음을 발견할 수 있다. 8. 일사가 차단된 27.5-28.5$^{\circ}C$의 외기온하에서 6.5-8.5$^{\circ}C$의 냉수를 온실 바닥면적 1$m^2$당 1.3 liter/min의 유량으로 온실표면에 살수했을 때 실내기온을 외기온보다 1$0^{\circ}C$ 낮은 16.5-18.$0^{\circ}C$ 정도로 낮출 수 있었다. 앞으로 살수 수온(T$_{w}$ )이나 외기온(T$_{o}$ ) 뿐만아니라 살수율(Q)에 따라 온실기온 (T$_{g}$ )에 미치는 상관 관계 T$_{g}$ = f(T$_{w}$ , Q, T$_{o}$ )를 구명하여 지하수 자체 또는 Heat Pump를 이용한 지하수온 이하의 냉수로 온실냉방의 가능성을 구명하는 것이 앞으로의 과제이다.

  • PDF

Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발 (Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.227-252
    • /
    • 2018
  • 인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.

전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구 (A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior)

  • 정남호;김재경
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.175-191
    • /
    • 2011
  • 국가신성장동력으로MICE(Meeting, Incentive travel, Convention, Exhibition) 산업이각광받으면서국내전시산업에 대한 관심이 드높아 지고 있다. 이에 따라 국내 전시산업(domestic exhibition industry)도 미국이나 유럽과 같이 전시성과를 향상시키기 위한 다양한 연구가 진행 중이다. 그 중에서도 전시환경이나 전시기법 등에 따라 관람효과가 다르기 때문에 지능형 정보기술을 이용하여 전시장에 방문한 참관객의 참관패턴을 분석하여 참관객을 이해하고 더 나아가 참여업체 간의 연관관계 도출 및 전시회의 성과를 높이고자 하는 연구들이 진행되고 있다. 그런데, 이러한 기존의 부스추천시스템과 관련된 연구를 살펴보면 시스템적인 관점에서 추천의 정확성만을 논하고 있을 뿐 추천을 통한 참관객의 행동이나 인식의 변화에 대해서는 충분히 논의하고 있지 못하다. 부스추천시스템(Booth Recommendation System)은 참관객의 부스방문 정보를 바탕으로 참관객에게 적절한 부스를 추천하기 때문에 참관객은 사전에 계획하지 않은 전시장을 방문하게 될 수 있다. 이 때 참관객은 계획하지 않은 방문행동을 통해서 만족할 수도 있지만 추천과 정이 번거롭다거나 자유롭게 참관을 하는데 방해가 된다고 생각할 수 있다. 이 경우 참관객의 자유로운 관람보다 오히려 더 좋지 않은 성과를 낼 수 있다. 따라서 부스 추천시스템을 전시장에 적용하기 위해서는 시스템의 성과에 미치는 영향요인이 무엇인지 전반적으로 검토하고, 부스추천시스템이 참관객의 계획되지 않은 방문행동에 미치는 영향에 대해 면밀히 검토해야 한다. 이에 본 연구에서는 부스추천시스템의 성과에 영향을 미치는 요인이 무엇인지 이론과 기존문헌을 통해 살펴보고자 하였다. 또한, 참관객의 지각된 부스추천시스템의 성과가 참관객의 계획되지 않은 행동에 대한 만족도와 부스추천시스템의 재사용의도에 어떤 영향을 미치는지 살펴보고자 하였다. 이러한 연구목적을 달성하기 위한 이론적 프레임워크로 본 연구는 계획되지 않은 행동이론(Unplanned Behavior Theory)을 도입하였다. 계획되지 않은 행동(unplanned behavior)이란 "소비자들이 사전에 계획하지 되지 않은 채 실행된 어떤 행동"으로 정의할 수 있다. 소비자들의 계획되지 않은 행동은 그 동안 마케팅 등 다양한 분야에서 연구되어 왔다. 특히, 마케팅에서는 계획되지 않은 행동 중 계획되지 않은 구매(unplanned purchasing)에 많은 관심을 두어 왔는데 이 개념은 종종 충동적 구매(impulsive purchasing)와 혼동되어 사용되곤 하였다. 그런데, 충동적 구매가 갑자기 무엇인가 구매를 해야하는 강하고 지속적인 충동(urge)이라고 본다면 계획되지 않은 구매는 구매의사결정의 시점이 상점에 들어가기 전이 아닌 상점 내에서 수행된다는 점이 다르다. 즉, 모든 충동적 구매는 비계획적이나, 모든 계획되지 않은 구매가 충동적인 구매는 아니다. 그런데, 왜 소비자들은 계획되지 않은 행동을 하는가? 이에 대해서는 학자들에 따라 여러 가지 의견이 있으나 소비자가 사전에 철저한 계획을 수립하지 않고 따라서 중간에 계획을 변화시킬만한 유연성(flexibility)이 있기 때문이라는 점에 일관된 의견을 보인다. 즉, 계획되지 않은 행동을 하는데 많은 비용이 소요된다면 소비자들은 사전에 수립한 계획을 변경하기 어렵게 될 것이기 때문이다. 본 연구에서 살펴보고자 하는 전시장 역시 참관객들은 방문하기 전에 전시장이 어떤 프로그램으로 구성되어 있는지 살펴보고, 어떤 부스를 방문할지를 사전에 계획하게 된다. 그 이유는 참관객들이 전시장 방문에 투입할 수 있는 시간은 한정되어 있는 반면에 전시회는 대규모의 다양한 부스로 운영되기 때문에 참관객들이 모든 부스를 참관한다는 것이 현실적으로 불가능하기 때문이다. 따라서 본 연구에서 제시하는 부스추천시스템이 참관객이 선호할 만한 부스를 추천하게 되면 참관객은 자신의 계획을 변화시켜서 부스추천시스템이 추천한 부스를 방문하게 된다. 이러한 방문행동은 소비자가 상점을 방문하거나, 관광객이 관광지에서 계획하지 않은 행동을 하는 것과 유사한 측면에서 이해가 가능하며 특히 최근 여행소비자들이 정보기기의 영향으로 계획되지 않은 행동을 하는 경우가 부쩍 증가한 추세와 동일한 맥락에서 이해가 가능하다. 이에 다음과 같은 연구모형을 설정하였다. 이 연구모형은 참관객이 지각한 부스추천시스템의 성과(performance)를 매개변수로 하고 있는데 이 성과에 영향을 미치는 요인으로 부스추천시스템에 대한 신뢰(trust), 전시장 참관객의 지식수준 (knowledge level), 부스 추천시스템의 기대된 개인화 (expected personalization) 그리고 부스추천시스템의 자유위협(threat to freedom)을 영향요인으로 파악하였다. 또한, 지각된 부스추천시스템 성과와 계획되지 않은 행동에 대한 참관객의 만족도와 향후 부스추천시스템의 재사용의도간의 인과관계도 파악하고자 하였다. 이 때 부스추천시스템에대한신뢰는권한(competence), 자선(benevolence), 그리고진실(integrity)의2차요인(2nd order factor)으로구성하고, 나머지 요인들은 1차 요인으로 구성하였다. 이를 검증하기 위해 2011 DMC Culture Open 행사에서 부스추천시스템을 테스트하기 위하여 시스템을 개발하고, 101명의 참관객을 대상으로 실증조사를 하여 분석하였다. 분석결과 첫째, 부스추천시스템에 있어서 참관객의 신뢰가 가장 중요한 요소이며 실제 해당 부스추천시스템을 이용한 참관객들은 신뢰를 통해 부스추천시스템이 성과 있다고 인식하였다. 둘째, 참관객의 지식수준 역시 부스추천시스템의 성과에 유의한 영향을 미쳤는데 이는 추천의 성과가 전시장에 대한 사전적 이해가 필요함을 의미한다. 즉, 전시장에 대한 이해가 높은 참관객이 부스추천시스템의 유용성을 더 잘 파악하는 것으로 나타났다. 셋째, 기대된 개인화 수준은 성과에 유의한 영향을 미치지 못했는데 이는 기존 연구와 다른 결과로 본 연구에 사용된 부스추천시스템이 충분히 개인화 서비스를 제공하지 못했기 때문이라고 판단된다. 넷째, 부스추천시스템의 추천정보는 개인의 자유를 위협하거나 제한한다고 느끼지 않음으로 충분히 유용한 가치를 갖는다고 할 수 있다. 끝으로 부스정보시스템의 높은 성과는 참관객들의 계획되지 않은 행동에 대한 높은 만족도와 향후에도 부스추천시스템을 재사용할 의도를 만드는 것으로 나타났다. 이와 같이 본 연구는 부스추천시스템이 야기하는 참관객의 계획되지 않은 부스방문행동에 미치는 영향력을 분석하기 위해 계획되지 않은 행동이론을 중심으로 실증자료를 이용하여 분석하고, 이를 통해 향후 부스추천시스템의 구축 및 설계에 유용한 시사점을 도출할 수 있었다. 향후에는 보다 정교한 설문구성과 측정대상을 이용하여 추가적인 검토가 필요할 것으로 기대된다.