• Title/Summary/Keyword: 2차유동분포

Search Result 7, Processing Time 0.029 seconds

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

Effects of Turbulence Diffusion and Secondary Flows on the Particle Concentration Distribution in Single Stage ESP (1단 전기집진기에서 난류확산과 2차유동이 입자의 농도분포에 미치는 영향)

  • 정상현;김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2271-2282
    • /
    • 1995
  • Numerical simulations for the effects of secondary flow and turbulence diffusion on the particle concentration distributions have been carried out for the single stage electrostatic precipitator. The electrohydrodynamic secondary flow, particle concentration distribution and collection efficiency have been evaluated as a function of dimensionless parameters such as Re, $N_{end}$, $P_{e}$ x. The results of simulations show that for increasing secondary flow intensity the concentration distribution is drastically deformed and collection efficiency is decreased which is more than due to turbulent diffusion.n.n.

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

A Study on Velocity Profiles and Critical Dean Number of Developing Transitional Unsteady Flows in a Curved Duct (곡관덕트의 입구영역에서 천이비정상유동의 속도분포와 임계딘수에 관한연구)

  • 이행남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.862-870
    • /
    • 1998
  • In this paper an experimental investigation of characteristics of developing transitional unsteady flows in a square-sectional 180。 curved duct are presented. The experimental study using air is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Do ppler Velocimeter(LDV) system. The flow development is found to depend upon Dean number dimensionless angular frequency velocity amplitude ration and cur-vature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows are strong and complicate at entrance region. The entrance length of transitional pulsating flow is obtained to 120。 of bended angle of duct in this experimental conditions.

  • PDF

Heat Transfer on Secondary Injection Surface in Supersonic Flow-field with Various Injection Angle (초음속 유동장내 2차분사 분사각도 변화에 따른 열전달 특성 변화)

  • Song, Ji-Woon;Yi, Jong-Ju;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.321-325
    • /
    • 2008
  • In this paper, heat transfer changes due to the shock/boundary layer interaction were investigated on surfaces where secondary jet are injected. With an infra-red thermography, surface temperature was measured and the measured data was used to obtain the convective heat transfer. Heat transfer is enhanced with increment of momentum ratio. And normal injection case has a higher heat transfer value than that of 15 degrees inclined injection case. Secondary injection momentum ratio and injection angle affect the surface heat transfer distribution.

  • PDF

Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct (180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동)

  • Sohn Hyun-Chull;Lee Heang-Nam;Park Gil-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.

A study on flow characteristics of laminar oscillatory flows in a square-sectional $180^{\circ}C$ curved duct (정사각단면 $180^{\circ}C$ 곡덕트에서 층류진동유동의 유동 특성에 관한 연구)

  • Park, Gil-Mun;Jo, Byeong-Gi;Bong, Tae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.139-152
    • /
    • 1998
  • In the present study, the flow characteristics of developing laminar oscillatory flows in a square -sectional 180 deg. curved duct are investigated experimentally. The experimental study using air in a square-sectional 180 deg. curved duct is carried out to measure velocity distributions with a data acquisition and LDV (Laser Doppler Velocimetry) processing system. In this system, Rotating Machinery Resolver (RMR) and PHASE program are used to obtain the results of unsteady flows. The major flow characteristics of developing oscillatory flows are found by analyzing velocity curves, mean velocity profiles, time-averaged velocity distribution of secondary flow, wall shear stress distributions, and entrance lengths. In a lower dimensionless angular frequency, the axial velocity distribution of laminar oscillatory flow in a curved duct shows a convex shape in a central part and axial symmetry. The maximum value of wall shear stress in a lower dimensionless angular frequency is located in an outside wall, but according to increasing the dimensionless angular frequency, the maximum of wall shear stress is moved to inner wall. The entrance lengths of laminar oscillatory flows in a square-sectional 180 deg. curved duct is obtained to 90 deg. of bended angle of duct in this experimental conditions.