• 제목/요약/키워드: 2차원-3차원 시각적 특징 앙상블

검색결과 1건 처리시간 0.013초

효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블 (Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation)

  • 송성호;박경민;김인철
    • 정보처리학회 논문지
    • /
    • 제13권7호
    • /
    • pp.335-347
    • /
    • 2024
  • 개방형 어휘 3차원 포인트 클라우드 개체 분할은 3차원 장면 포인트 클라우드를 훈련단계에서 등장하였던 기본 클래스의 개체들뿐만 아니라 새로운 신규 클래스의 개체들로도 분할해야 하는 어려운 시각적 작업이다. 본 논문에서는 중요한 모델 설계 이슈별 기존 모델들의 한계점들을 극복하기 위해, 새로운 개방형 어휘 3차원 개체 분할 모델인 Open3DME를 제안한다. 첫째, 제안 모델은 클래스-독립적인 3차원 마스크의 품질을 향상시키기 위해, 새로운 트랜스포머 기반 3차원 포인트 클라우드 개체 분할 모델인 T3DIS[6]를 마스크 제안 모듈로 채용한다. 둘째, 제안 모델은 각 포인트 세그먼트별로 텍스트와 의미적으로 정렬된 시각적 특징을 얻기 위해, 사전 학습된 OpenScene 인코더와 CLIP 인코더를 적용하여 포인트 클라우드와 멀티-뷰 RGB 영상들로부터 각각 3차원 및 2차원 특징들을 추출한다. 마지막으로, 제안 모델은 개방형 어휘 레이블 할당 과정동안 각 포인트 클라우드 세그먼트별로 추출한 2차원 시각적 특징과 3차원 시각적 특징을 상호 보완적으로 함께 이용하기 위해, 특징 앙상블 기법을 적용한다. 본 논문에서는 ScanNet-V2 벤치마크 데이터 집합을 이용한 다양한 정량적, 정성적 실험들을 통해, 제안 모델의 성능 우수성을 입증한다.